SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arosio M.) ;pers:(Arosio Paolo)"

Sökning: WFRF:(Arosio M.) > Arosio Paolo

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kakkar, Vaishali, et al. (författare)
  • The S/T-Rich Motif in the DNAJB6 Chaperone Delays Polyglutamine Aggregation and the Onset of Disease in a Mouse Model
  • 2016
  • Ingår i: Molecular Cell. - : Elsevier BV. - 1097-2765. ; 62:2, s. 272-283
  • Tidskriftsartikel (refereegranskat)abstract
    • Expanded CAG repeats lead to debilitating neurodegenerative disorders characterized by aggregation of proteins with expanded polyglutamine (polyQ) tracts. The mechanism of aggregation involves primary and secondary nucleation steps. We show how a noncanonical member of the DNAJ-chaperone family, DNAJB6, inhibits the conversion of soluble polyQ peptides into amyloid fibrils, in particular by suppressing primary nucleation. This inhibition is mediated by a serine/threonine-rich region that provides an array of surface-exposed hydroxyl groups that bind to polyQ peptides and may disrupt the formation of the H bonds essential for the stability of amyloid fibrils. Early prevention of polyQ aggregation by DNAJB6 occurs also in cells and leads to delayed neurite retraction even before aggregates are visible. In a mouse model, brain-specific coexpression of DNAJB6 delays polyQ aggregation, relieves symptoms, and prolongs lifespan, pointing to DNAJB6 as a potential target for disease therapy and tool for unraveling early events in the onset of polyQ diseases. Kakkar et al. show that DNAJB6 is a chaperone that inhibits early steps in the formation of polyQ amyloid fibrils. An S/T-rich region in DNAJB6 is crucial for this function. In a polyQ mouse model, the inhibitory effects of DNAJB6 delay disease onset and increase lifespan.
  •  
2.
  • Månsson, Cecilia, et al. (författare)
  • Interaction of the molecular chaperone DNAJB6 with growing amyloid-beta 42 (Aβ42) aggregates leads to sub-stoichiometric inhibition of amyloid formation.
  • 2014
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 289:45, s. 31066-31076
  • Tidskriftsartikel (refereegranskat)abstract
    • The human molecular chaperone protein DNAJB6 was recently found to inhibit the formation of amyloid fibrils from polyglutamine peptides associated with neurodegenerative disorders such as Huntington's disease. We show in the present study that DNAJB6 also inhibits amyloid formation by an even more aggregation-prone peptide (the amyloid-beta peptide, (Aβ42)(2), implicated in Alzheimer's disease)in a highly efficient manner. By monitoring fibril formation using Thioflavin T fluorescence and far-UV CD spectroscopy, we have found that the aggregation of Aβ42 is retarded by DNAJB6 in a concentration dependent manner, extending to very low sub-stoichiometric molar ratios of chaperone to peptide. Quantitative kinetic analysis and immunochemistry studies suggest that the high inhibitory efficiency is due to the interactions of the chaperone with aggregated forms of Aβ42 rather than the monomeric form of the peptide. This interaction prevents the growth of such species to longer fibrils and inhibits the formation of new amyloid fibrils through both primary and secondary nucleation. A low dissociation rate of DNAJB6 from Aβ42 aggregates leads to its incorporation into growing fibrils and hence to its gradual depletion from solution with time. When DNAJB6 is eventually depleted, fibril proliferation takes place, but the inhibitory activity can be prolonged by introducing DNAJB6 at regular intervals during the aggregation reaction. These results reveal the highly efficacious mode of action of this molecular chaperone against protein aggregation, and demonstrate that the role of molecular chaperones can involve interactions with multiple aggregated species leading to the inhibition of both principal nucleation pathways through which aggregates are able to form.
  •  
3.
  • Aprile, Francesco A., et al. (författare)
  • Selective targeting of primary and secondary nucleation pathways in Ab42 aggregation using a rational antibody scanning method
  • 2017
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 3:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibodies targeting Ab42 are under intense scrutiny because of their therapeutic potential for Alzheimer’s disease. To enable systematic searches, we present an “antibody scanning” strategy for the generation of a panel of antibodies against Ab42. Each antibody in the panel is rationally designed to target a specific linear epitope, with the selected epitopes scanning the Ab42 sequence. By screening in vitro the panel to identify the specific microscopic steps in the Ab42 aggregation process influenced by each antibody, we identify two antibodies that target specifically the primary and the secondary nucleation steps, which are key for the production of Ab42 oligomers. These two antibodies act, respectively, to delay the onset of aggregation and to block the proliferation of aggregates, and correspondingly reduce the toxicity in a Caenorhabditis elegans model over-expressing Ab42. These results illustrate how the antibody scanning method described here can be used to readily obtain very small antibody libraries with extensive coverage of the sequences of target proteins.
  •  
4.
  • Arosio, Paolo, et al. (författare)
  • Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • It is increasingly recognized that molecular chaperones play a key role in modulating the formation of amyloid fibrils, a process associated with a wide range of human disorders. Understanding the detailed mechanisms by which they perform this function, however, has been challenging because of the great complexity of the protein aggregation process itself. In this work, we build on a previous kinetic approach and develop a model that considers pairwise interactions between molecular chaperones and different protein species to identify the protein components targeted by the chaperones and the corresponding microscopic reaction steps that are inhibited. We show that these interactions conserve the topology of the unperturbed reaction network but modify the connectivity weights between the different microscopic steps. Moreover, by analysing several protein-molecular chaperone systems, we reveal the striking diversity in the microscopic mechanisms by which molecular chaperones act to suppress amyloid formation.
  •  
5.
  • Arosio, Paolo, et al. (författare)
  • Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions.
  • 2016
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 10:1, s. 333-341
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing the sizes and interactions of macromolecules under native conditions is a challenging problem in many areas of molecular sciences, which fundamentally arises from the polydisperse nature of biomolecular mixtures. Here, we describe a microfluidic platform for diffusional sizing based on monitoring micron-scale mass transport simultaneously in space and time. We show that the global analysis of such combined space-time data enables the hydrodynamic radii of individual species within mixtures to be determined directly by deconvoluting average signals into the contributions from the individual species. We demonstrate that the ability to perform rapid noninvasive sizing allows this method to be used to characterize interactions between biomolecules under native conditions. We illustrate the potential of the technique by implementing a single-step quantitative immunoassay that operates on a time scale of seconds and detects specific interactions between biomolecules within complex mixtures.
  •  
6.
  • Cohen, Samuel I A, et al. (författare)
  • A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers.
  • 2015
  • Ingår i: Nature Structural & Molecular Biology. - : Springer Science and Business Media LLC. - 1545-9985 .- 1545-9993. ; 22:3, s. 207-213
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease is an increasingly prevalent neurodegenerative disorder whose pathogenesis has been associated with aggregation of the amyloid-β peptide (Aβ42). Recent studies have revealed that once Aβ42 fibrils are generated, their surfaces effectively catalyze the formation of neurotoxic oligomers. Here we show that a molecular chaperone, a human Brichos domain, can specifically inhibit this catalytic cycle and limit human Aβ42 toxicity. We demonstrate in vitro that Brichos achieves this inhibition by binding to the surfaces of fibrils, thereby redirecting the aggregation reaction to a pathway that involves minimal formation of toxic oligomeric intermediates. We verify that this mechanism occurs in living mouse brain tissue by cytotoxicity and electrophysiology experiments. These results reveal that molecular chaperones can help maintain protein homeostasis by selectively suppressing critical microscopic steps within the complex reaction pathways responsible for the toxic effects of protein misfolding and aggregation.
  •  
7.
  • Habchi, Johnny, et al. (författare)
  • An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer's disease.
  • 2016
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The conversion of the β-amyloid (Aβ) peptide into pathogenic aggregates is linked to the onset and progression of Alzheimer's disease. Although this observation has prompted an extensive search for therapeutic agents to modulate the concentration of Aβ or inhibit its aggregation, all clinical trials with these objectives have so far failed, at least in part because of a lack of understanding of the molecular mechanisms underlying the process of aggregation and its inhibition. To address this problem, we describe a chemical kinetics approach for rational drug discovery, in which the effects of small molecules on the rates of specific microscopic steps in the self-assembly of Aβ42, the most aggregation-prone variant of Aβ, are analyzed quantitatively. By applying this approach, we report that bexarotene, an anticancer drug approved by the U.S. Food and Drug Administration, selectively targets the primary nucleation step in Aβ42 aggregation, delays the formation of toxic species in neuroblastoma cells, and completely suppresses Aβ42 deposition and its consequences in a Caenorhabditis elegans model of Aβ42-mediated toxicity. These results suggest that the prevention of the primary nucleation of Aβ42 by compounds such as bexarotene could potentially reduce the risk of onset of Alzheimer's disease and, more generally, that our strategy provides a general framework for the rational identification of a range of candidate drugs directed against neurodegenerative disorders.
  •  
8.
  • Habchi, Johnny, et al. (författare)
  • Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 114:2, s. 200-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The aggregation of the 42-residue form of the amyloid-β peptide (Aβ42) is a pivotal event in Alzheimer's disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aβ42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aβ42 aggregation that uses as a readout the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aβ42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery.
  •  
9.
  • Meisl, Georg, et al. (författare)
  • Molecular mechanisms of protein aggregation from global fitting of kinetic models.
  • 2016
  • Ingår i: Nature Protocols. - : Springer Science and Business Media LLC. - 1750-2799 .- 1754-2189. ; 11:2, s. 252-272
  • Tidskriftsartikel (refereegranskat)abstract
    • The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and fitting the chosen models using an advanced minimization algorithm to yield the reaction orders and rate constants. Finally, we outline how to use this approach to investigate which targets potential inhibitors of amyloid formation bind to and where in the reaction mechanism they act. The protocol, from processing data to determining mechanisms, can be completed in <1 d.
  •  
10.
  • Michaels, Thomas C.T., et al. (författare)
  • Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide
  • 2020
  • Ingår i: Nature Chemistry. - : Springer Science and Business Media LLC. - 1755-4330 .- 1755-4349. ; 12:5, s. 445-451
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligomeric species populated during the aggregation of the Aβ42 peptide have been identified as potent cytotoxins linked to Alzheimer’s disease, but the fundamental molecular pathways that control their dynamics have yet to be elucidated. By developing a general approach that combines theory, experiment and simulation, we reveal, in molecular detail, the mechanisms of Aβ42 oligomer dynamics during amyloid fibril formation. Even though all mature amyloid fibrils must originate as oligomers, we found that most Aβ42 oligomers dissociate into their monomeric precursors without forming new fibrils. Only a minority of oligomers converts into fibrillar structures. Moreover, the heterogeneous ensemble of oligomeric species interconverts on timescales comparable to those of aggregation. Our results identify fundamentally new steps that could be targeted by therapeutic interventions designed to combat protein misfolding diseases. [Figure not available: see fulltext.].
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy