SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ashton Nicholas J) ;pers:(Hansson Oskar)"

Sökning: WFRF:(Ashton Nicholas J) > Hansson Oskar

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ashton, Nicholas J., et al. (författare)
  • Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer's trial selection and disease monitoring.
  • 2022
  • Ingår i: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:12, s. 2555-2562
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood biomarkers indicative of Alzheimer's disease (AD) pathology are altered in both preclinical and symptomatic stages of the disease. Distinctive biomarkers may be optimal for the identification of AD pathology or monitoring of disease progression. Blood biomarkers that correlate with changes in cognition and atrophy during the course of the disease could be used in clinical trials to identify successful interventions and thereby accelerate the development of efficient therapies. When disease-modifying treatments become approved for use, efficient blood-based biomarkers might also inform on treatment implementation and management in clinical practice. In the BioFINDER-1 cohort, plasma phosphorylated (p)-tau231 and amyloid-β42/40 ratio were more changed at lower thresholds of amyloid pathology. Longitudinally, however, only p-tau217 demonstrated marked amyloid-dependent changes over 4-6years in both preclinical and symptomatic stages of the disease, with no such changes observed in p-tau231, p-tau181, amyloid-β42/40, glial acidic fibrillary protein or neurofilament light. Only longitudinal increases of p-tau217 were also associated with clinical deterioration and brain atrophy in preclinical AD. The selective longitudinal increase of p-tau217 and its associations with cognitive decline and atrophy was confirmed in an independent cohort (Wisconsin Registry for Alzheimer's Prevention). These findings support the differential association of plasma biomarkers with disease development and strongly highlight p-tau217 as a surrogate marker of disease progression in preclinical and prodromal AD, with impact for the development of new disease-modifying treatments.
  •  
2.
  • Brum, Wagner S., et al. (författare)
  • A two-step workflow based on plasma p-tau217 to screen for amyloid β positivity with further confirmatory testing only in uncertain cases
  • 2023
  • Ingår i: Nature Aging. - 2662-8465. ; 3:9, s. 1079-1090
  • Tidskriftsartikel (refereegranskat)abstract
    • Cost-effective strategies for identifying amyloid-beta (A beta) positivity in patients with cognitive impairment are urgently needed with recent approvals of anti-A beta immunotherapies for Alzheimer's disease (AD). Blood biomarkers can accurately detect AD pathology, but it is unclear whether their incorporation into a full diagnostic workflow can reduce the number of confirmatory cerebrospinal fluid (CSF) or positron emission tomography (PET) tests needed while accurately classifying patients. We evaluated a two-step workflow for determining A beta-PET status in patients with mild cognitive impairment (MCI) from two independent memory clinic-based cohorts (n = 348). A blood-based model including plasma tau protein 217 (p-tau217), age and APOE epsilon 4 status was developed in BioFINDER-1 (area under the curve (AUC) = 89.3%) and validated in BioFINDER-2 (AUC = 94.3%). In step 1, the blood-based model was used to stratify the patients into low, intermediate or high risk of A beta-PET positivity. In step 2, we assumed referral only of intermediate-risk patients to CSF A beta 42/A beta 40 testing, whereas step 1 alone determined A beta-status for low-and high-risk groups. Depending on whether lenient, moderate or stringent thresholds were used in step 1, the two-step workflow overall accuracy for detecting A beta-PET status was 88.2%, 90.5% and 92.0%, respectively, while reducing the number of necessary CSF tests by 85.9%, 72.7% and 61.2%, respectively. In secondary analyses, an adapted version of the BioFINDER-1 model led to successful validation of the two-step workflow with a different plasma p-tau217 immunoassay in patients with cognitive impairment from the TRIAD cohort (n = 84). In conclusion, using a plasma p-tau217-based model for risk stratification of patients with MCI can substantially reduce the need for confirmatory testing while accurately classifying patients, offering a cost-effective strategy to detect AD in memory clinic settings.
  •  
3.
  • Janelidze, Shorena, et al. (författare)
  • Detecting amyloid positivity in early Alzheimer's disease using combinations of plasma A beta 42/A beta 40 and p-tau
  • 2022
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:2, s. 283-293
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We studied usefulness of combining blood amyloid beta A(beta)42/A beta 40, phosphorylated tau (p-tau)217, and neurofilament light (NfL) to detect abnormal brain A beta deposition in different stages of early Alzheimer's disease (AD). Methods: Plasma biomarkers were measured using mass spectrometry (A beta 42/A beta 40) and immunoassays (p-tau217 and NfL) in cognitively unimpaired individuals (CU, N = 591) and patients with mild cognitive impairment (MCI, N = 304) from two independent cohorts (BioFINDER-1, BioFINDER-2). Results: In CU, a combination of plasma A beta 42/A beta 40 and p-tau217 detected abnormal brain A beta status with area under the curve (AUC) of 0.83 to 0.86. In MCI, the models including p-tau217 alone or A beta 42/A beta 40 and p-tau217 had similar AUCs (0.86-0.88); however, the latter showed improved model fit. The models were implemented in an online application providing individualized risk assessments (https://brainapps.shinyappas.io/PredictAAbplasma/). Discussion:A combination of plasma A beta 42/A beta 40 and p-tau217 discriminated A beta status with relatively high accuracy, whereas p-tau217 showed strongest associations with A beta pathology in MCI but not in CU.
  •  
4.
  • Janelidze, Shorena, et al. (författare)
  • Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer's disease.
  • 2023
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 146:4, s. 1592-1601
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma phospho-tau (p-tau) species have emerged as the most promising blood-based biomarkers of Alzheimer's disease. Here, we performed a head-to-head comparison of p-tau181, p-tau217 and p-tau231 measured using 10 assays to detect abnormal brain amyloid-β status and predict future progression to Alzheimer's dementia. The study included 135 patients with baseline diagnosis of mild cognitive impairment (mean age 72.4 years; 60.7% women) who were followed for an average of 4.9 years. Seventy-one participants had abnormal Aβ-status (i.e., abnormal CSF Aβ42/40) at baseline; and 45 of these Aβ-positive participants progressed to Alzheimer's dementia during follow-up. P-tau concentrations were determined in baseline plasma and CSF. P-tau217 and p-tau181 were both measured using immunoassays developed by Lilly Research Laboratories (Lilly) and mass spectrometry assays developed at Washington University (WashU). P-tau217 was also analysed using Simoa immunoassay developed by Janssen Research and Development (Janss). P-tau181 was measured using Simoa immunoassay from ADxNeurosciences (ADx), Lumipulse immunoassay from Fujirebio (Fuji) and Splex immunoassay from Mesoscale Discovery (Splex). Both p-tau181 and p-tau231 were quantified using Simoa immunoassay developed at the University of Gothenburg (UGOT). We found that the mass spectrometry-based p-tau217 (p-tau217WashU) exhibited significantly better performance than all other plasma p-tau biomarkers when detecting abnormal Aβ status (AUC=0.947; pdiff<0.015) or progression to Alzheimer's dementia (AUC=0.932; pdiff<0.027). Among immunoassays, p-tau217Lilly had the highest AUCs (0.886-0.889), which was not significantly different from the AUCs of p-tau217Janss, p-tau181ADx and p-tau181WashU (AUCrange, 0.835-0.872; pdiff>0.09), but higher compared with AUC of p-tau231UGOT, p-tau181Lilly, p-tau181UGOT, p-tau181Fuji, and p-tau181Splex (AUCrange, 0.642-0.813; pdiff ≤0.029). Correlations between plasma and CSF values were strongest for p-tau217WashU (R=0.891) followed by p-tau217Lilly (R=0.755; pdiff=0.003 vs p-tau217WashU) and weak to moderate for the rest of the p-tau biomarkers (Rrange, 0.320-0.669). In conclusion, the findings suggest that among all tested plasma p-tau assays, mass spectrometry-based measures of p-tau217 perform best when identifying mild cognitive impairment patients with abnormal brain Aβ or those who will subsequently progress to Alzheimer's dementia. Several other assays (p-tau217Lilly, p-tau217Janss, p-tau181ADx, and p-tau181WashU) showed relatively high and consistent accuracy across both outcomes. The results further indicate that the highest performing assays have performance metrics that rival the gold standards of Aβ-PET and CSF. If further validated, our findings will have significant impacts in diagnosis, screening and treatment for Alzheimer's dementia in the future.
  •  
5.
  • Ashton, Nicholas J., et al. (författare)
  • A multicentre validation study of the diagnostic value of plasma neurofilament light
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.
  •  
6.
  • Brum, Wagner S., et al. (författare)
  • Effect of Neprilysin Inhibition on Alzheimer Disease Plasma Biomarkers : A Secondary Analysis of a Randomized Clinical Trial
  • 2024
  • Ingår i: JAMA Neurology. - 2168-6149. ; 81:2, s. 197-200
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-β (Aβ) accumulation is critical in Alzheimer disease (AD), and neprilysin is involved in physiologically clearing Aβ. Concerns exist regarding long-term use of sacubitril/valsartan, a neprilysin inhibitor and angiotensin receptor blocker used for heart failure, and its potential to increase AD risk. We evaluated neprilysin inhibition’s effect on AD blood biomarkers in patients with coronary heart disease.
  •  
7.
  • Janelidze, Shorena, et al. (författare)
  • Plasma Phosphorylated Tau 217 and Aβ42/40 to Predict Early Brain Aβ Accumulation in People Without Cognitive Impairment
  • 2024
  • Ingår i: JAMA NEUROLOGY. - 2168-6149 .- 2168-6157.
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Phase 3 trials of successful antiamyloid therapies in Alzheimer disease (AD) have demonstrated improved clinical efficacy in people with less severe disease. Plasma biomarkers will be essential for efficient screening of participants in future primary prevention clinical trials testing antiamyloid therapies in cognitively unimpaired (CU) individuals with initially low brain beta-amyloid (A beta) levels who are at high risk of accumulating A beta. OBJECTIVE To investigate if combining plasma biomarkers could be useful in predicting subsequent development of A beta pathology in CU individuals with subthreshold brain A beta levels (defined as A beta levels <40 Centiloids) at baseline. DESIGN, SETTING, AND PARTICIPANTS This was a longitudinal study including Swedish BioFINDER-2 (enrollment 2017-2022) and replication in 2 independent cohorts, the Knight Alzheimer Disease Research Center (Knight ADRC; enrollment 1988 and 2019) and Swedish BioFINDER-1 (enrollment 2009-2015). Included for analysis was a convenience sample of CU individuals with baseline plasma phosphorylated tau 217 (p-tau217) and A beta 42/40 assessments and A beta assessments with positron emission tomography (A beta-PET) or cerebrospinal fluid (CSF) A beta 42/40. Data were analyzed between April 2023 and May 2024. EXPOSURES Baseline plasma levels of A beta 42/40, p-tau217, the ratio of p-tau217 to nonphosphorylated tau (%p-tau217), p-tau231, and glial fibrillary acidic protein (GFAP). MAIN OUTCOMES AND MEASURES Cross-sectional and longitudinal PET and CSF measures of brain A beta pathology. RESULTS This study included 495 (BioFINDER-2), 283 (Knight ADRC), and 205 (BioFINDER-1) CU participants. In BioFINDER-2, the mean (SD) age was 65.7 (14.4) with 261 females (52.7%). When detecting abnormal CSF A beta-status, a combination of plasma %p-tau217 and A beta 42/40 showed better performance (area under the curve = 0.949; 95% CI, 0.929-0.970; P <.02) than individual biomarkers. In CU participants with subthreshold baseline A beta-PET, baseline plasma %p-tau217 and A beta 42/40 levels were significantly associated with baseline A beta-PET (n = 384) and increases in A beta-PET over time (n = 224). Associations of plasma %p-tau217 and A beta 42/40 and their interaction with baseline A beta-PET (%p-tau217: beta = 2.77; 95% CI, 1.84-3.70; A beta 42/40: beta = -1.64; 95% CI, -2.53 to -0.75; %p-tau217 x A beta 42/40: beta = -2.14; 95% CI, -2.79 to -1.49; P < .001) and longitudinal A beta-PET (%p-tau217: beta = 0.67; 95% CI, 0.48-0.87; A beta 42/40: beta = -0.33; 95% CI, -0.51 to -0.15; %p-tau217 x A beta 42/40: beta = -0.31; 95% CI, -0.44 to -0.18; P < .001) were also significant in the models combining the 2 baseline biomarkers as predictors. Similarly, baseline plasma p-tau217 and A beta 42/40 were independently associated with longitudinal A beta-PET in Knight ADRC (%p-tau217: beta = 0.71; 95% CI, 0.26-1.16; P = .002; A beta 42/40: beta = -0.74; 95% CI, -1.26 to -0.22; P = .006) and longitudinal CSF A beta 42/40 in BioFINDER-1 (p-tau217: beta = -0.0003; 95% CI, -0.0004 to -0.0001; P = .01; A beta 42/40: beta = 0.0004; 95% CI, 0.0002-0.0006; P < .001) in CU participants with subthreshold A beta levels at baseline. Plasma p-tau231 and GFAP did not provide any clear independent value. CONCLUSIONS AND RELEVANCE Results of this cohort study suggest that combining plasma p-tau217and A beta 42/40 levels could be useful for predicting development of A beta pathology in people with early stages of subthreshold A beta accumulation. These biomarkers might thus facilitate screening of participants for future primary prevention trials.
  •  
8.
  • Mattsson-Carlgren, Niklas, et al. (författare)
  • Prediction of Longitudinal Cognitive Decline in Preclinical Alzheimer Disease Using Plasma Biomarkers
  • 2023
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 80:4, s. 360-369
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Alzheimer disease (AD) pathology starts with a prolonged phase of beta-amyloid (A beta) accumulation without symptoms. The duration of this phase differs greatly among individuals. While this disease phase has high relevance for clinical trial designs, it is currently unclear how to best predict the onset of clinical progression.OBJECTIVE To evaluate combinations of different plasma biomarkers for predicting cognitive decline in A beta-positive cognitively unimpaired (CU) individuals.DESIGN, SETTING, AND PARTICIPANTS This prospective population-based prognostic study evaluated data from 2 prospective longitudinal cohort studies (the Swedish BioFINDER-1 and the Wisconsin Registry for Alzheimer Prevention [WRAP]), with data collected from February 8, 2010, to October 21, 2020, for the BioFINDER-1 cohort and from August 11, 2011, to June 27, 2021, for the WRAP cohort. Participants were CU individuals recruited from memory clinics who had brain A beta pathology defined by cerebrospinal fluid (CSF) A beta 42/40 in the BioFINDER-1 study and by Pittsburgh Compound B (PiB) positron emission tomography (PET) in the WRAP study. A total of 564 eligible A beta-positive and A beta-negative CU participants with available relevant data from the BioFINDER-1 and WRAP cohorts were included in the study; of those, 171 A beta-positive participants were included in the main analyses.EXPOSURES Baseline P-tau181, P-tau217, P-tau231, glial fibrillary filament protein, and neurofilament light measured in plasma; CSF biomarkers in the BioFINDER-1 cohort, and PiB PET uptake in the WRAP cohort.MAIN OUTCOMES AND MEASURES The primary outcome was longitudinal measures of cognition (using the Mini-Mental State Examination [MMSE] and the modified Preclinical Alzheimer Cognitive Composite [mPACC]) over a median of 6 years (range, 2-10 years). The secondary outcome was conversion to AD dementia. Baseline biomarkers were used in linear regression models to predict rates of longitudinal cognitive change (calculated separately). Models were adjusted for age, sex, years of education, apolipoprotein E epsilon 4 allele status, and baseline cognition. Multivariable models were compared based on model R-2 coefficients and corrected Akaike information criterion.RESULTS Among 171 A beta-positive CU participants included in the main analyses, 119 (mean [SD] age, 73.0 [5.4] years; 60.5% female) were from the BioFINDER-1 study, and 52 (mean [SD] age, 64.4 [4.6] years; 65.4% female) were from the WRAP study. In the BioFINDER-1 cohort, plasma P-tau217 was the best marker to predict cognitive decline in the mPACC (model R-2 = 0.41) and the MMSE (model R-2 = 0.34) and was superior to the covariates-only models (mPACC: R-2 = 0.23; MMSE: R-2 = 0.04; P < .001 for both comparisons). Results were validated in the WRAP cohort; for example, plasma P-tau217 was associated with mPACC slopes (R-2 = 0.13 vs 0.01 in the covariates-only model; P = .01) and MMSE slopes (R-2 = 0.29 vs 0.24 in the covariates-only model; P = .046). Sparse models were identified with plasma P-tau217 as a predictor of cognitive decline. Power calculations for enrichment in hypothetical clinical trials revealed large relative reductions in sample sizes when using plasma P-tau217 to enrich for CU individuals likely to experience cognitive decline over time.CONCLUSIONS AND RELEVANCE In this study, plasma P-tau217 predicted cognitive decline in patients with preclinical AD. These findings suggest that plasma P-tau217 may be used as a complement to CSF or PET for participant selection in clinical trials of novel disease-modifying treatments.
  •  
9.
  • Mendes, Augusto J., et al. (författare)
  • Head-to-head study of diagnostic accuracy of plasma and cerebrospinal fluid p-tau217 versus p-tau181 and p-tau231 in a memory clinic cohort
  • 2024
  • Ingår i: JOURNAL OF NEUROLOGY. - 0340-5354 .- 1432-1459. ; 271:4, s. 1707-1716
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objective Phosphorylated tau (p-tau) 217 has recently received attention because it seems more reliable than other p-tau variants for identifying Alzheimer's disease (AD) pathology. Thus, we aimed to compare the diagnostic accuracy of plasma and CSF p-tau217 with p-tau181 and p-tau231 in a memory clinic cohort.Methods The study included 114 participants (CU = 33; MCI = 67; Dementia = 14). The p-tau variants were correlated versus continuous measures of amyloid (A) and tau (T)-PET. The p-tau phospho-epitopes were assessed through: (i) effect sizes (delta) between diagnostic and A +/- and T +/- groups; (ii) receiver operating characteristic (ROC) analyses in A-PET and T-PET.Results The correlations between both plasma and CSF p-tau217 with A-PET and T-PET (r range 0.64-0.83) were stronger than those of p-tau181 (r range 0.44-0.79) and p-tau231 (r range 0.46-0.76). Plasma p-tau217 showed significantly higher diagnostic accuracy than p-tau181 and p-tau231 in (i) differences between diagnostic and biomarker groups (delta(range): p-tau217 = 0.55-0.96; p-tau181 = 0.51-0.67; p-tau231 = 0.53-0.71); (ii) ROC curves to identify A-PET and T-PET positivity (AUC(average): p-tau217 = 0.96; p-tau181 = 0.76; p-tau231 = 0.79). On the other hand, CSF p-tau217 (AUC(average) = 0.95) did not reveal significant differences in A-PET and T-PET AUC than p-tau181 (AUC(average) = 0.88) and p-tau231 (AUC(average) = 0.89).Discussion Plasma p-tau217 demonstrated better performance in the identification of AD pathology and clinical phenotypes in comparison with other variants of p-tau in a memory clinic cohort. Furthermore, p-tau217 had comparable performance in plasma and CSF. Our findings suggest the potential of plasma p-tau217 in the diagnosis and screening for AD, which could allow for a decreased use of invasive biomarkers in the future.
  •  
10.
  • Scheeren Brum, Wagner, 1997, et al. (författare)
  • A blood-based biomarker workflow for optimal tau-PET referral in memory clinic settings.
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood-based biomarkers for screening may guide tau positrion emissition tomography (PET) scan referrals to optimize prognostic evaluation in Alzheimer's disease. Plasma Aβ42/Aβ40, pTau181, pTau217, pTau231, NfL, and GFAP were measured along with tau-PET in memory clinic patients with subjective cognitive decline, mild cognitive impairment or dementia, in the Swedish BioFINDER-2 study (n=548) and in the TRIAD study (n=179). For each plasma biomarker, cutoffs were determined for 90%, 95%, or 97.5% sensitivity to detect tau-PET-positivity. We calculated the percentage of patients below the cutoffs (who would not undergo tau-PET; "saved scans") and the tau-PET-positivity rate among participants above the cutoffs (who would undergo tau-PET; "positive predictive value"). Generally, plasma pTau217 performed best. At the 95% sensitivity cutoff in both cohorts, pTau217 resulted in avoiding nearly half tau-PET scans, with a tau-PET-positivity rate among those who would be referred for a scan around 70%. And although tau-PET was strongly associated with subsequent cognitive decline, in BioFINDER-2 it predicted cognitive decline only among individuals above the referral cutoff on plasma pTau217, supporting that this workflow could reduce prognostically uninformative tau-PET scans. In conclusion, plasma pTau217 may guide selection of patients for tau-PET, when accurate prognostic information is of clinical value.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy