SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ashton Nicholas J) ;pers:(Karikari Thomas)"

Sökning: WFRF:(Ashton Nicholas J) > Karikari Thomas

  • Resultat 1-10 av 92
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferrari-Souza, J. P., et al. (författare)
  • APOEε4 associates with microglial activation independently of Aβ plaques and tau tangles
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal studies suggest that the apolipoprotein E epsilon 4 (APOE epsilon 4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOE epsilon 4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomog-raphy for amyloid-beta (A beta; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOE epsilon 4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for A beta and tau deposition. Furthermore, microglial acti-vation mediated the A beta-independent effects of APOE epsilon 4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOE epsilon 4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOE epsilon 4 genotype exerts A beta-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition.
  •  
2.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:5, s. 1913-1924
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Direct comparisons of the main blood phosphorylated tau immunoassays in memory clinic populations are needed to understand possible differences. Methods In the BIODEGMAR study, 197 participants presenting with cognitive complaints were classified into an Alzheimer's disease (AD) or a non-AD cerebrospinal fluid (CSF) profile group, according to their amyloid beta 42/ phosphorylated tau (A beta 42/p-tau) ratio. We performed a head-to-head comparison of nine plasma and nine CSF tau immunoassays and determined their accuracy to discriminate abnormal CSF A beta 42/p-tau ratio. Results All studied plasma tau biomarkers were significantly higher in the AD CSF profile group compared to the non-AD CSF profile group and significantly discriminated abnormal CSF A beta 42/p-tau ratio. For plasma p-tau biomarkers, the higher discrimination accuracy was shown by Janssen p-tau217 (r = 0.76; area under the curve [AUC] = 0.96), ADx p-tau181 (r = 0.73; AUC = 0.94), and Lilly p-tau217 (r = 0.73; AUC = 0.94). Discussion Several plasma p-tau biomarkers can be used in a specialized memory clinic as a stand-alone biomarker to detect biologically-defined AD. Highlights Patients with an Alzheimer's disease cerebrospinal fluid (AD CSF) profile have higher plasma phosphorylated tau (p-tau) levels than the non-AD CSF profile group. All plasma p-tau biomarkers significantly discriminate patients with an AD CSF profile from the non-AD CSF profile group. Janssen p-tau217, ADx p-tau181, and Lilly p-tau217 in plasma show the highest accuracy to detect biologically defined AD. Janssen p-tau217, ADx p-tau181, Lilly p-tau217, Lilly p-tau181, and UGot p-tau231 in plasma show performances that are comparable to their CSF counterparts.
  •  
3.
  • Montoliu-Gaya, Laia, et al. (författare)
  • Plasma and cerebrospinal fluid glial fibrillary acidic protein levels in adults with Down syndrome: a longitudinal cohort study
  • 2023
  • Ingår i: eBioMedicine. - : Elsevier BV. - 2352-3964. ; 90
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The diagnosis of symptomatic Alzheimer's disease is a clinical challenge in adults with Down syndrome. Blood biomarkers would be of particular clinical importance in this population. The astrocytic Glial Fibrillary Acidic Protein (GFAP) isa marker of astrogliosis associated with amyloid pathology, but its longitudinal changes, association with other biomarkers and cognitive performance have not been studied in individuals with Down syndrome. Methods We performed a three-centre study of adults with Down syndrome, autosomal dominant Alzheimer's disease and euploid individuals enrolled in Hospital Sant Pau, Barcelona (Spain), Hospital Clinic, Barcelona (Spain) and Ludwig-Maximilians-Universitat, Munich (Germany). Cerebrospinal fluid (CSF) and plasma GFAP concentrations were quantified using Simoa. A subset of participants had PET 18F-fluorodeoxyglucose, amyloid tracers and MRI measurements. Findings This study included 997 individuals, 585 participants with Down syndrome, 61 Familial Alzheimer's disease mutation carriers and 351 euploid individuals along the Alzheimer's disease continuum, recruited between November 2008 and May 2022. Participants with Down syndrome were clinically classified at baseline as asymp-tomatic, prodromal Alzheimer's disease and Alzheimer's disease dementia. Plasma GFAP levels were significantly increased in prodromal and Alzheimer's disease dementia compared to asymptomatic individuals and increased in parallel to CSF A beta changes, ten years prior to amyloid PET positivity. Plasma GFAP presented the highest diagnostic performance to discriminate symptomatic from asymptomatic groups (AUC = 0.93, 95% CI 0.9-0.95) and its con-centrations were significantly higher in progressors vs non-progressors (p < 0.001), showing an increase of 19.8% (11.8-33.0) per year in participants with dementia. Finally, plasma GFAP levels were highly correlated with cortical thinning and brain amyloid pathology. Interpretation Our findings support the utility of plasma GFAP as a biomarker of Alzheimer's disease in adults with Down syndrome, with possible applications in clinical practice and clinical trials.
  •  
4.
  • Woo, M. S., et al. (författare)
  • 14-3-3 ζ/δ-reported early synaptic injury in Alzheimer's disease is independently mediated by sTREM2
  • 2023
  • Ingår i: Journal of Neuroinflammation. - 1742-2094. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears.Methods We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta (zeta/delta) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages.Results14-3-3 zeta/delta was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 zeta/delta correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss.ConclusionsOur results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.
  •  
5.
  • Alcolea, D., et al. (författare)
  • Use of plasma biomarkers for AT(N) classification of neurodegenerative dementias
  • 2021
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 92:11, s. 1206-1214
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: All categories included in the AT(N) classification can now be measured in plasma. However, their agreement with cerebrospinal fluid (CSF) markers is not fully established. A blood signature to generate the AT(N) classification would facilitate early diagnosis of patients with Alzheimer's disease (AD) through an easy and minimally invasive approach. Methods: We measured Aβ, pTau181 and neurofilament light (NfL) in 150 plasma samples of the Sant Pau Initiative on Neurodegeneration cohort including patients with mild cognitive impairment, AD dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal participants. We classified participants in the AT(N) categories according to CSF biomarkers and studied the diagnostic value of plasma biomarkers within each category individually and in combination. Results: The plasma Aβ composite, pTau181 and NfL yielded areas under the curve (AUC) of 0.75, 0.78 and 0.88 to discriminate positive and negative participants in their respective A, T and N categories. The combination of all three markers did not outperform pTau181 alone (AUC=0.81) to discriminate A+T+ from A-T- participants. There was a moderate correlation between plasma Aβ composite and CSF Aβ1-42/Aβ1-40 (Rho=-0.5, p<0.001) and between plasma pTau181 and CSF pTau181 in the entire cohort (Rho=0.51, p<0.001). NfL levels in plasma showed high correlation with those in CSF (Rho=0.78, p<0.001). Conclusions: Plasma biomarkers are useful to detect the AT(N) categories, and their use can differentiate patients with pathophysiological evidence of AD. A blood AT(N) signature may facilitate early diagnosis and follow-up of patients with AD through an easy and minimally invasive approach. © Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.
  •  
6.
  • Bellaver, B., et al. (författare)
  • Astrocyte reactivity influences amyloid-beta effects on tau pathology in preclinical Alzheimer's disease
  • 2023
  • Ingår i: Nature Medicine. - 1078-8956. ; 29:7, s. 1775-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-sectional and longitudinal analyses of tau pathology in preclinical Alzheimer's disease reveal that tau tangles accumulate as a function of amyloid-beta burden only in individuals positive for an astrocyte reactivity biomarker. An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-beta (A beta)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash A beta effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of A beta with tau phosphorylation in CU individuals. We found that A beta was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast(+)). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of A beta only in CU Ast(+) individuals. Our findings suggest astrocyte reactivity as an important upstream event linking A beta with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.
  •  
7.
  • Ferrari-Souza, J. P., et al. (författare)
  • APOEε4 potentiates amyloid β effects on longitudinal tau pathology
  • 2023
  • Ingår i: Nature Aging. - 2662-8465. ; 3:10, s. 1210-
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms by which the apolipoprotein E epsilon 4 (APOE epsilon 4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOE epsilon 4 carriership and amyloid-beta (A beta) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for A beta ([F-18]AZD4694) and tau ([F-18]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOE epsilon 4 carriership potentiates A beta effects on longitudinal tau accumulation over 2 years. The APOE epsilon 4-potentiated A beta effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217(+)) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOE epsilon 4 allele plays a key role in A beta downstream effects on the aggregation of phosphorylated tau in the living human brain.
  •  
8.
  • Lessa Benedet, Andréa, et al. (författare)
  • Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum
  • 2021
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:12, s. 1471-1483
  • Tidskriftsartikel (refereegranskat)abstract
    • Question What are the levels of plasma glial fibrillary acidic protein (GFAP) throughout the Alzheimer disease (AD) continuum, and how do they compare with the levels of cerebrospinal fluid (CSF) GFAP? Findings In this cross-sectional study, plasma GFAP levels were elevated in the preclinical and symptomatic stages of AD, with levels higher than those of CSF GFAP. Plasma GFAP had a higher accuracy than CSF GFAP to discriminate between amyloid-beta (A beta)-positive and A beta-negative individuals, also at the preclinical stage. Meaning This study suggests that plasma GFAP is a sensitive biomarker that significantly outperforms CSF GFAP in indicating A beta pathology in the early stages of AD. Importance Glial fibrillary acidic protein (GFAP) is a marker of reactive astrogliosis that increases in the cerebrospinal fluid (CSF) and blood of individuals with Alzheimer disease (AD). However, it is not known whether there are differences in blood GFAP levels across the entire AD continuum and whether its performance is similar to that of CSF GFAP. Objective To evaluate plasma GFAP levels throughout the entire AD continuum, from preclinical AD to AD dementia, compared with CSF GFAP. Design, Setting, and Participants This observational, cross-sectional study collected data from July 29, 2014, to January 31, 2020, from 3 centers. The Translational Biomarkers in Aging and Dementia (TRIAD) cohort (Montreal, Canada) included individuals in the entire AD continuum. Results were confirmed in the Alzheimer's and Families (ALFA+) study (Barcelona, Spain), which included individuals with preclinical AD, and the BioCogBank Paris Lariboisiere cohort (Paris, France), which included individuals with symptomatic AD. Main Outcomes and Measures Plasma and CSF GFAP levels measured with a Simoa assay were the main outcome. Other measurements included levels of CSF amyloid-beta 42/40 (A beta 42/40), phosphorylated tau181 (p-tau181), neurofilament light (NfL), Chitinase-3-like protein 1 (YKL40), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and levels of plasma p-tau181 and NfL. Results of amyloid positron emission tomography (PET) were available in TRIAD and ALFA+, and results of tau PET were available in TRIAD. Results A total of 300 TRIAD participants (177 women [59.0%]; mean [SD] age, 64.6 [17.6] years), 384 ALFA+ participants (234 women [60.9%]; mean [SD] age, 61.1 [4.7] years), and 187 BioCogBank Paris Lariboisiere participants (116 women [62.0%]; mean [SD] age, 69.9 [9.2] years) were included. Plasma GFAP levels were significantly higher in individuals with preclinical AD in comparison with cognitively unimpaired (CU) A beta-negative individuals (TRIAD: A beta-negative mean [SD], 185.1 [93.5] pg/mL, A beta-positive mean [SD], 285.0 [142.6] pg/mL; ALFA+: A beta-negative mean [SD], 121.9 [42.4] pg/mL, A beta-positive mean [SD], 169.9 [78.5] pg/mL). Plasma GFAP levels were also higher among individuals in symptomatic stages of the AD continuum (TRIAD: CU A beta-positive mean [SD], 285.0 [142.6] pg/mL, mild cognitive impairment [MCI] A beta-positive mean [SD], 332.5 [153.6] pg/mL; AD mean [SD], 388.1 [152.8] pg/mL vs CU A beta-negative mean [SD], 185.1 [93.5] pg/mL; Paris: MCI A beta-positive, mean [SD], 368.6 [158.5] pg/mL; AD dementia, mean [SD], 376.4 [179.6] pg/mL vs CU A beta-negative mean [SD], 161.2 [67.1] pg/mL). Plasma GFAP magnitude changes were consistently higher than those of CSF GFAP. Plasma GFAP more accurately discriminated A beta-positive from A beta-negative individuals than CSF GFAP (area under the curve for plasma GFAP, 0.69-0.86; area under the curve for CSF GFAP, 0.59-0.76). Moreover, plasma GFAP levels were positively associated with tau pathology only among individuals with concomitant A beta pathology. Conclusions and Relevance This study suggests that plasma GFAP is a sensitive biomarker for detecting and tracking reactive astrogliosis and A beta pathology even among individuals in the early stages of AD. This cross-sectional cohort study evaluates plasma glial fibrillary acidic protein levels throughout the entire Alzheimer disease continuum, from preclinical Alzheimer disease to Alzheimer disease dementia, compared with cerebrospinal fluid glial fibrillary acidic protein.
  •  
9.
  • Therriault, J., et al. (författare)
  • Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer's disease
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 19:11, s. 4967-4977
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Plasma biomarkers are promising tools for Alzheimer's disease (AD) diagnosis, but comparisons with more established biomarkers are needed.METHODS: We assessed the diagnostic performance of p-tau(181), p-tau(217), and p-tau(231) in plasma and CSF in 174 individuals evaluated by dementia specialists and assessed with amyloid-PET and tau-PET. Receiver operating characteristic (ROC) analyses assessed the performance of plasma and CSF biomarkers to identify amyloid-PET and tau-PET positivity.RESULTS: Plasma p-tau biomarkers had lower dynamic ranges and effect sizes compared to CSF p-tau. Plasma p-tau(181) (AUC = 76%) and p-tau(231) (AUC = 82%) assessments performed inferior to CSF p-tau(181) (AUC = 87%) and p-tau(231) (AUC = 95%) for amyloid-PET positivity. However, plasma p-tau(217) (AUC = 91%) had diagnostic performance indistinguishable from CSF (AUC = 94%) for amyloid-PET positivity.DISCUSSION: Plasma and CSF p-tau(217) had equivalent diagnostic performance for biomarker-defined AD. Our results suggest that plasma p-tau(217) may help reduce the need for invasive lumbar punctures without compromising accuracy in the identification of AD.
  •  
10.
  • Yakoub, Y., et al. (författare)
  • Longitudinal blood biomarker trajectories in preclinical Alzheimer's disease
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260.
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. Methods: We measured longitudinal changes in plasma amyloid-beta (A beta)(42/40) ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with A beta and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. Results: A beta(42/40) ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) epsilon 4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both A beta-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. Discussion: Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 92

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy