SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Aznar Marianne C.) ;lar1:(lu)"

Search: WFRF:(Aznar Marianne C.) > Lund University

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Taylor, Carolyn, et al. (author)
  • Estimating the Risks of Breast Cancer Radiotherapy : Evidence From Modern Radiation Doses to the Lungs and Heart and From Previous Randomized Trials
  • 2017
  • In: Journal of clinical oncology : official journal of the American Society of Clinical Oncology. - 0732-183X .- 1527-7755. ; 35:15, s. 1641-1649
  • Journal article (peer-reviewed)abstract
    • Purpose Radiotherapy reduces the absolute risk of breast cancer mortality by a few percentage points in suitable women but can cause a second cancer or heart disease decades later. We estimated the absolute long-term risks of modern breast cancer radiotherapy. Methods First, a systematic literature review was performed of lung and heart doses in breast cancer regimens published during 2010 to 2015. Second, individual patient data meta-analyses of 40,781 women randomly assigned to breast cancer radiotherapy versus no radiotherapy in 75 trials yielded rate ratios (RRs) for second primary cancers and cause-specific mortality and excess RRs (ERRs) per Gy for incident lung cancer and cardiac mortality. Smoking status was unavailable. Third, the lung or heart ERRs per Gy in the trials and the 2010 to 2015 doses were combined and applied to current smoker and nonsmoker lung cancer and cardiac mortality rates in population-based data. Results Average doses from 647 regimens published during 2010 to 2015 were 5.7 Gy for whole lung and 4.4 Gy for whole heart. The median year of irradiation was 2010 (interquartile range [IQR], 2008 to 2011). Meta-analyses yielded lung cancer incidence ≥ 10 years after radiotherapy RR of 2.10 (95% CI, 1.48 to 2.98; P < .001) on the basis of 134 cancers, indicating 0.11 (95% CI, 0.05 to 0.20) ERR per Gy whole-lung dose. For cardiac mortality, RR was 1.30 (95% CI, 1.15 to 1.46; P < .001) on the basis of 1,253 cardiac deaths. Detailed analyses indicated 0.04 (95% CI, 0.02 to 0.06) ERR per Gy whole-heart dose. Estimated absolute risks from modern radiotherapy were as follows: lung cancer, approximately 4% for long-term continuing smokers and 0.3% for nonsmokers; and cardiac mortality, approximately 1% for smokers and 0.3% for nonsmokers. Conclusion For long-term smokers, the absolute risks of modern radiotherapy may outweigh the benefits, yet for most nonsmokers (and ex-smokers), the benefits of radiotherapy far outweigh the risks. Hence, smoking can determine the net effect of radiotherapy on mortality, but smoking cessation substantially reduces radiotherapy risk.
  •  
2.
  • Aznar, Marianne C., et al. (author)
  • A Monte Carlo study of the energy dependence of Al2O3:C crystals for real-time in vivo dosimetry in mammography
  • 2005
  • In: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 114:Nos 1-3, s. 444-449
  • Journal article (peer-reviewed)abstract
    • In a previous experimental study, a novel method for in vivo dosimetry has been investigated, based on radioluminescence (RL) and optically stimulated luminescence (OSL). However, because of the large difference in atomic composition between the detector material and the breast tissue, relatively large energy dependence in low-energy X-ray beams can be expected. In the present work, the energy dependence of Al2O3:C crystals was modelled with the Monte Carlo code EGSnrc using three types of X-ray spectra. The results obtained (5.6-7.3%) agree with a previously determined experimental result (9%) within the combined standard uncertainty of the two methods. The influence of the size of the crystal on the energy dependence was investigated together with the effect of varying the thickness of the surrounding light-protective material. The results obtained indicate a minor effect owing to the thickness of the light-protective material, and a somewhat larger effect from reducing the diameter of the crystal. The outcome of this study can be used to improve the future design of the RL/OSL dosimetry system for use in mammography.
  •  
3.
  • Brodin, N. Patrik, et al. (author)
  • Life years lost-comparing potentially fatal late complications after radiotherapy for pediatric medulloblastoma on a common scale
  • 2012
  • In: Cancer. - : Wiley. - 1097-0142 .- 0008-543X. ; 118:21, s. 5432-5440
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The authors developed a framework for estimating and comparing the risks of various long-term complications on a common scale and applied it to 3 different techniques for craniospinal irradiation in patients with pediatric medulloblastoma. METHODS: Radiation dose-response parameters related to excess hazard ratios for secondary breast, lung, stomach, and thyroid cancer; heart failure, and myocardial infarction were derived from large published clinical series. Combined with age-specific and sex-specific hazards in the US general population, the dose-response analysis yielded excess hazards of complications for a cancer survivor as a function of attained age. After adjusting for competing risks of death, life years lost (LYL) were estimated based on excess hazard and prognosis of a complication for 3-dimensional conformal radiotherapy (3D CRT), volumetric modulated arc therapy (VMAT), and intensity-modulated proton therapy (IMPT). RESULTS: Lung cancer contributed most to the estimated LYL, followed by myocardial infarction, and stomach cancer. The estimates of breast or thyroid cancer incidence were higher than those for lung and stomach cancer incidence, but LYL were lower because of the relatively good prognosis. Estimated LYL ranged between 1.90 years for 3D CRT to 0.28 years for IMPT. In a paired comparison, IMPT was associated with significantly fewer LYL than both photon techniques. CONCLUSIONS: Estimating the risk of late complications is associated with considerable uncertainty, but including prognosis and attained age at an event to obtain the more informative LYL estimate added relatively little to this uncertainty. Cancer 2012. (c) 2012 American Cancer Society.
  •  
4.
  • Brodin, N Patrik, et al. (author)
  • Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma.
  • 2011
  • In: Acta oncologica (Stockholm, Sweden). - 1651-226X. ; 50:6, s. 806-16
  • Journal article (peer-reviewed)abstract
    • Abstract Introduction. The aim of this model study was to estimate and compare the risk of radiation-induced adverse late effects in pediatric patients with medulloblastoma (MB) treated with either three-dimensional conformal radiotherapy (3D CRT), inversely-optimized arc therapy (RapidArc(®) (RA)) or spot-scanned intensity-modulated proton therapy (IMPT). The aim was also to find dose-volume toxicity parameters relevant to children undergoing RT to be used in the inverse planning of RA and IMPT, and to use in the risk estimations. Material and methods. Treatment plans were created for all three techniques on 10 pediatric patients that have been treated with craniospinal irradiation (CSI) at our institution in 2007-2009. Plans were generated for two prescription CSI doses, 23.4 Gy and 36 Gy. Risk estimates were based on childhood cancer survivor data when available and secondary cancer (SC) risks were estimated as a function of age at exposure and attained age according to the organ-equivalent dose (OED) concept. Results. Estimates of SC risk was higher for the RA plans and differentiable from the estimates for 3D CRT at attained ages above 40 years. The risk of developing heart failure, hearing loss, hypothyroidism and xerostomia was highest for the 3D CRT plans. The risks of all adverse effects were estimated as lowest for the IMPT plans, even when including secondary neutron (SN) irradiation with high values of the neutron radiation weighting factors (WR(neutron)). Conclusions. When comparing RA and 3D CRT treatment for pediatric MB it is a matter of comparing higher SC risk against higher risks of non-cancer adverse events. Considering time until onset of the different complications is necessary to fully assess patient benefit in such a comparison. The IMPT plans, including SN dose contribution, compared favorably to the photon techniques in terms of all radiobiological risk estimates.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view