1. |
- Glasbey, JC, et al.
(författare)
-
- 2021
-
swepub:Mat__t
|
|
2. |
|
|
3. |
|
|
4. |
- Tabiri, S, et al.
(författare)
-
- 2021
-
swepub:Mat__t
|
|
5. |
- Bravo, L, et al.
(författare)
-
- 2021
-
swepub:Mat__t
|
|
6. |
- Abazov, V. M., et al.
(författare)
-
The upgraded DO detector
- 2006
-
Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 565:2, s. 463-537
-
Tidskriftsartikel (refereegranskat)abstract
- The DO experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid -argon calorimeters and central muon detector, remaining from Run 1, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DO.
|
|
7. |
|
|
8. |
|
|
9. |
- Upsdell, E. W., et al.
(författare)
-
The XMM cluster survey : exploring scaling relations and completeness of the dark energy survey year 3 redMaPPer cluster catalogue
- 2023
-
Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 522:4, s. 5267-5290
-
Tidskriftsartikel (refereegranskat)abstract
- We cross-match and compare characteristics of galaxy clusters identified in observations from two sky surveys using two completely different techniques. One sample is optically selected from the analysis of 3 years of Dark Energy Survey observations using the redMaPPer cluster detection algorithm. The second is X-ray selected from XMM observations analysed by the XMM Cluster Survey. The samples comprise a total area of 57.4 deg(2), bounded by the area of four contiguous XMM survey regions that overlap the DES footprint. We find that the X-ray-selected sample is fully matched with entries in the redMaPPer catalogue, above lambda > 20 and within 0.1 < z < 0.9. Conversely, only 38 per cent of the redMaPPer catalogue is matched to an X-ray extended source. Next, using 120 optically clusters and 184 X-ray-selected clusters, we investigate the form of the X-ray luminosity-temperature (L-X -T-X ), luminosity-richness (L-X - lambda), and temperature-richness (T-X - lambda) scaling relations. We find that the fitted forms of the L-X -T-X relations are consistent between the two selection methods and also with other studies in the literature. However, we find tentative evidence for a steepening of the slope of the relation for low richness systems in the X-ray-selected sample. When considering the scaling of richness with X-ray properties, we again find consistency in the relations (i.e. L-X - lambda and T-X - lambda) between the optical and X-ray-selected samples. This is contrary to previous similar works that find a significant increase in the scatter of the luminosity scaling relation for X-ray-selected samples compared to optically selected samples.
|
|
10. |
- Lughadha, E. N., et al.
(författare)
-
Extinction risk and threats to plants and fungi
- 2020
-
Ingår i: Plants People Planet. - : Wiley. - 2572-2611. ; 2:5, s. 389-408
-
Tidskriftsartikel (refereegranskat)abstract
- Societal Impact Statement There is increasing awareness that plants and fungi, as natural solutions, can play an important role in tackling ongoing global environmental challenges. We illustrate how understanding current and projected threats to plants and fungi is necessary to manage and mitigate risks, while building awareness of gaps and bias in current assessment coverage is essential to adequately prioritize conservation efforts. We highlight the state of the art in conservation science and point to current methods of assessment and future studies needed to mitigate species extinction. SummaryPlant and fungal biodiversity underpin life on earth and merit careful stewardship in an increasingly uncertain environment. However, gaps and biases in documented extinction risks to plant and fungal species impede effective management. Formal extinction risk assessments help avoid extinctions, through engagement, financial, or legal mechanisms, but most plant and fungal species lack assessments. Available global assessments cover c. 30% of plant species (ThreatSearch). Red List coverage overrepresents woody perennials and useful plants, but underrepresents single-country endemics. Fungal assessments overrepresent well-known species and are too few to infer global status or trends. Proportions of assessed vascular plant species considered threatened vary between global assessment datasets: 37% (ThreatSearch), and 44% (International Union for Conservation of Nature Red List of Threatened Species). Our predictions, correcting for several quantifiable biases, suggest that 39% of all vascular plant species are threatened with extinction. However, other biases remain unquantified, and may affect our estimate. Preliminary trend data show plants moving toward extinction. Quantitative estimates based on plant extinction risk assessments may understate likely biodiversity loss: they do not fully capture the impacts of climate change, slow-acting threats, or clustering of extinction risk, which could amplify loss of evolutionary potential. The importance of extinction risk estimation to support existing and emerging conservation initiatives is likely to grow as threats to biodiversity intensify. This necessitates urgent and strategic expansion of efforts toward comprehensive and ongoing assessment of plant and fungal extinction risk.
|
|