SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bakris George L.) "

Sökning: WFRF:(Bakris George L.)

  • Resultat 1-10 av 18
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Rossing, Peter, et al. (författare)
  • Finerenone in Patients With Chronic Kidney Disease and Type 2 Diabetes by Sodium-Glucose Cotransporter 2 Inhibitor Treatment : The FIDELITY Analysis.
  • 2022
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 45:12, s. 2991-2998
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Finerenone reduced the risk of kidney and cardiovascular events in people with chronic kidney disease (CKD) and type 2 diabetes in the FIDELIO-DKD and FIGARO-DKD phase 3 studies. Effects of finerenone on outcomes in patients taking sodium-glucose cotransporter 2 inhibitors (SGLT2is) were evaluated in a prespecified pooled analysis of these studies.RESEARCH DESIGN AND METHODS: Patients with type 2 diabetes and urine albumin-to-creatinine ratio (UACR) ≥30 to ≤5,000 mg/g and estimated glomerular filtration rate (eGFR) ≥25 mL/min/1.73 m2 were randomly assigned to finerenone or placebo; SGLT2is were permitted at any time. Outcomes included cardiovascular composite (cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure) and kidney composite (kidney failure, sustained ≥57% eGFR decline, or renal death) end points, changes in UACR and eGFR, and safety outcomes.RESULTS: Among 13,026 patients, 877 (6.7%) received an SGLT2i at baseline and 1,113 (8.5%) initiated one during the trial. For the cardiovascular composite, the hazard ratios (HRs) were 0.87 (95% CI 0.79-0.96) without SGLT2i and 0.67 (95% CI 0.42-1.07) with SGLT2i. For the kidney composite, the HRs were 0.80 (95% CI 0.69-0.92) without SGLT2i and 0.42 (95% CI 0.16-1.08) with SGLT2i. Baseline SGLT2i use did not affect risk reduction for the cardiovascular or kidney composites with finerenone (Pinteraction = 0.46 and 0.29, respectively); neither did SGLT2i use concomitant with study treatment.CONCLUSIONS: Benefits of finerenone compared with placebo on cardiorenal outcomes in patients with CKD and type 2 diabetes were observed irrespective of SGLT2i use.
  •  
4.
  • Bakris, George L, et al. (författare)
  • Design and Baseline Characteristics of the Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease Trial.
  • 2019
  • Ingår i: American Journal of Nephrology. - : S. Karger AG. - 0250-8095 .- 1421-9670. ; 50:5, s. 333-344
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Among diabetics, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality, and progression of their underlying disease. Finerenone is a novel, non-steroidal, selective mineralocorticoid-receptor antagonist which has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD), while revealing only a low risk of hyperkalemia. However, the effect of finerenone on renal and CV outcomes has not been investigated in long-term trials yet.METHODS: The Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease -(FIDELIO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important renal and CV outcomes in T2D patients with CKD. FIDELIO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 5.5 years. FIDELIO-DKD randomized 5,734 patients with an estimated glomerular filtration rate (eGFR) ≥25-<75 mL/min/1.73 m2 and albuminuria (urinary albumin-to-creatinine ratio ≥30-≤5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of primary outcome (overall two-sided significance level α = 0.05), the composite of time to first occurrence of kidney failure, a sustained decrease of eGFR ≥40% from baseline over at least 4 weeks, or renal death.CONCLUSION: FIDELIO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of renal and CV events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen.
  •  
5.
  • Bakris, George L, et al. (författare)
  • Divergent results using clinic and ambulatory blood pressures report of a darusentan-resistant hypertension trial
  • 2010
  • Ingår i: Hypertension. - 0194-911X .- 1524-4563. ; 56:5, s. 824-830
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with resistant hypertension are at increased risk for cardiovascular events. The addition of new treatments to existing therapies will help achieve blood pressure (BP) goals in more resistant hypertension patients. In the current trial, 849 patients with resistant hypertension receiving ≥3 antihypertensive drugs, including a diuretic, at optimized doses were randomized to the selective endothelin A receptor antagonist darusentan, placebo, or the central α-2 agonist guanfacine. The coprimary end points of the study were changes from baseline to week 14 in trough, sitting systolic BP, and diastolic BP measured in the clinic. Decreases from baseline to week 14 in systolic BP for darusentan (−15±14 mm Hg) were greater than for guanfacine (−12±13 mm Hg; P<0.05) but not greater than placebo (−14±14 mm Hg). Darusentan, however, reduced mean 24-hour systolic BP (−9±12 mm Hg) more than placebo (−2±12 mm Hg) or guanfacine (−4±12 mm Hg) after 14 weeks of treatment (P<0.001 for each comparison). The most frequent adverse event associated with darusentan was fluid retention/edema at 28% versus 12% in each of the other groups. More patients withdrew because of adverse events on darusentan as compared with placebo or guanfacine. We conclude that darusentan provided greater reduction in systolic BP in resistant hypertension patients as assessed by ambulatory BP monitoring, in spite of not meeting its coprimary end points. The results of this trial highlight the importance of ambulatory BP monitoring in the design of hypertension clinical studies.
  •  
6.
  • Bakris, George L, et al. (författare)
  • Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes
  • 2020
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 383:23, s. 2219-2229
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Finerenone, a nonsteroidal, selective mineralocorticoid receptor antagonist, reduced albuminuria in short-term trials involving patients with chronic kidney disease (CKD) and type 2 diabetes. However, its long-term effects on kidney and cardiovascular outcomes are unknown.METHODS: In this double-blind trial, we randomly assigned 5734 patients with CKD and type 2 diabetes in a 1:1 ratio to receive finerenone or placebo. Eligible patients had a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of 30 to less than 300, an estimated glomerular filtration rate (eGFR) of 25 to less than 60 ml per minute per 1.73 m2 of body-surface area, and diabetic retinopathy, or they had a urinary albumin-to-creatinine ratio of 300 to 5000 and an eGFR of 25 to less than 75 ml per minute per 1.73 m2. All the patients were treated with renin-angiotensin system blockade that had been adjusted before randomization to the maximum dose on the manufacturer's label that did not cause unacceptable side effects. The primary composite outcome, assessed in a time-to-event analysis, was kidney failure, a sustained decrease of at least 40% in the eGFR from baseline, or death from renal causes. The key secondary composite outcome, also assessed in a time-to-event analysis, was death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure.RESULTS: During a median follow-up of 2.6 years, a primary outcome event occurred in 504 of 2833 patients (17.8%) in the finerenone group and 600 of 2841 patients (21.1%) in the placebo group (hazard ratio, 0.82; 95% confidence interval [CI], 0.73 to 0.93; P = 0.001). A key secondary outcome event occurred in 367 patients (13.0%) and 420 patients (14.8%) in the respective groups (hazard ratio, 0.86; 95% CI, 0.75 to 0.99; P = 0.03). Overall, the frequency of adverse events was similar in the two groups. The incidence of hyperkalemia-related discontinuation of the trial regimen was higher with finerenone than with placebo (2.3% and 0.9%, respectively).CONCLUSIONS: In patients with CKD and type 2 diabetes, treatment with finerenone resulted in lower risks of CKD progression and cardiovascular events than placebo. (Funded by Bayer; FIDELIO-DKD ClinicalTrials.gov number, NCT02540993.).
  •  
7.
  • Sacks, David B., et al. (författare)
  • Executive Summary: Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus
  • 2011
  • Ingår i: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 57:6, s. 793-798
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • BACKGROUND: Multiple laboratory tests are used in the diagnosis and management of patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH: An expert committee compiled evidence-based recommendations for the use of laboratory analysis in patients with diabetes. A new system was developed to grade the overall quality of the evidence and the strength of the recommendations. A draft of the guidelines was posted on the Internet, and the document was modified in response to comments. The guidelines were reviewed by the joint Evidence-Based Laboratory Medicine Committee of the AACC and the National Academy of Clinical Biochemistry and were accepted after revisions by the Professional Practice Committee and subsequent approval by the Executive Committee of the American Diabetes Association. CONTENT: In addition to the long-standing criteria based on measurement of venous plasma glucose, diabetes can be diagnosed by demonstrating increased hemoglobin A(1c) (Hb A(1c)) concentrations in the blood. Monitoring of glycemic control is performed by the patients measuring their own plasma or blood glucose with meters and by laboratory analysis of Hb A(1c). The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of autoantibodies, urine albumin, insulin, proinsulin, C-peptide, and other analytes are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended. (C) 2011 American Association for Clinical Chemistry and American Diabetes Association
  •  
8.
  • Sacks, David B., et al. (författare)
  • Executive Summary : Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus
  • 2023
  • Ingår i: Clinical Chemistry. - 0009-9147. ; 69:8, s. 777-784
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Numerous laboratory tests are used in the diagnosis and management of patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. An expert committee compiled evidence-based recommendations for laboratory analysis in patients with diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments in the full version of the guideline). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT: Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the patients measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring; genetic testing; and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
  •  
9.
  • Sacks, David B., et al. (författare)
  • Executive Summary : Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus
  • 2023
  • Ingår i: Diabetes Care. - 0149-5992. ; 46:10, s. 1740-1746
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Numerous laboratory tests are used in the diagnosis and management of patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. An expert committee compiled evidence-based recommendations for laboratory analysis in patients with diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments in the full version of the guideline). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association for Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (HbA1c) in the blood. Glycemic control is monitored by the patients measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring devices and also by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring; genetic testing; and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy