SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Balland C.) "

Sökning: WFRF:(Balland C.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Smartt, S. J., et al. (författare)
  • PESSTO : survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5(m) for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 angstrom between 3345-9995 angstrom. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 mu m and resolutions 23-33 angstrom) and imaging with broadband JHK(s) filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically similar to 15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHK(s) imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey.
  •  
2.
  • Abolfathi, Bela, et al. (författare)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • Ingår i: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
3.
  • Betoule, M., et al. (författare)
  • Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 568, s. A22-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present cosmological constraints from a joint analysis of type la supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The dataset includes several low-redshift samples (z < 0.1), all three seasons from the SDSS-11 (0.05 < z < 0.4), and three years from SNLS (0.2 < z < 1), and it totals 740 spectroscopically confirmed type la supernovae with high quality light curves. Methods. We followed the methods and assumptions of the SNLS three-year data analysis except for the following important improvements: I) the addition of the full SDSS-II spectroscopically-confirmed SN la sample in both the training of the SALT2 light-curve model and in the Hubble diagram analysis (374 SNe); 2) intercalibration of the SNLS and SDSS surveys and reduced systematic uncertainties in the photometric calibration, performed blindly with respect to the cosmology analysis; and 3) a thorough investigation of systematic errors associated with the SALT2 modeling of SN la light curves. Results. We produce recalibrated SN la light curves and associated distances for the SDSS-II and SNLS samples. The large SOSS-II sample provides an effective, independent, low -z anchor for the Hubble diagram and reduces the systematic error from calibration systematics in the low -z SN sample. For a flat ACDM cosmology, we find Omega(m), = 0.295 0.034 (stat+sys), a value consistent with the most recent cosmic microwave background (CMB) measurement from the Planck and WMAP experiments. Our result is 1.8 sigma (stat+sys) different than the previously published result of SNLS three-year data. The change is due primarily to improvements in the SNLS photometric calibration. When combined with CMB constraints, we measure a constant dark energy equation of state parameter omega = -1.018 +/- 0,057 (sral+sys) for a fiat universe. Adding baryon acoustic oscillation distance measurements gives similar constraints: omega = 59 -1.027 0.055. Our supernova measurements provide the most stringent constraints to date on the nature of dark energy.
  •  
4.
  •  
5.
  • Biollaz, S., et al. (författare)
  • Gas analysis in gasification of biomass and waste : Guideline report: Document 1
  • 2018
  • Rapport (refereegranskat)abstract
    • Gasification is generally acknowledged as one of the technologies that will enable the large-scale production of biofuels and chemicals from biomass and waste. One of the main technical challenges associated to the deployment of biomass gasification as a commercial technology is the cleaning and upgrading of the product gas. The contaminants of product gas from biomass/waste gasification include dust, tars, alkali metals, BTX, sulphur-, nitrogen- and chlorine compounds, and heavy metals. Proper measurement of the components and contaminants of the product gas is essential for the monitoring of gasification-based plants (efficiency, product quality, by-products), as well as for the proper design of the downstream gas cleaning train (for example, scrubbers, sorbents, etc.). In practice, a trade-off between reliability, accuracy and cost has to be reached when selecting the proper analysis technique for a specific application. The deployment and implementation of inexpensive yet accurate gas analysis techniques to monitor the fate of gas contaminants might play an important role in the commercialization of biomass and waste gasification processes.This special report commissioned by the IEA Bioenergy Task 33 group compiles a representative part of the extensive work developed in the last years by relevant actors in the field of gas analysis applied to(biomass and waste) gasification. The approach of this report has been based on the creation of a team of contributing partners who have supplied material to the report. This networking approach has been complemented with a literature review. The report is composed of a set of 2 documents. Document 1(the present report) describes the available analysis techniques (both commercial and underdevelopment) for the measurement of different compounds of interest present in gasification gas. The objective is to help the reader to properly select the analysis technique most suitable to the target compounds and the intended application. Document 1 also describes some examples of application of gas analysis at commercial-, pilot- and research gasification plants, as well as examples of recent and current joint research activities in the field. The information contained in Document 1 is complemented with a book of factsheets on gas analysis techniques in Document 2, and a collection of video blogs which illustrate some of the analysis techniques described in Documents 1 and 2.This guideline report would like to become a platform for the reinforcement of the network of partners working on the development and application of gas analysis, thus fostering collaboration and exchange of knowledge. As such, this report should become a living document which incorporates in future coming progress and developments in the field.
  •  
6.
  • Biollaz, S., et al. (författare)
  • Gas analysis in gasification of biomass and waste : Guideline report: Document 2 - Factsheets on gas analysis techniques
  • 2018
  • Rapport (refereegranskat)abstract
    • Gasification is generally acknowledged as one of the technologies that will enable the large-scale production of biofuels and chemicals from biomass and waste. One of the main technical challenges associated to the deployment of biomass gasification as a commercial technology is the cleaning and upgrading of the product gas. The contaminants of product gas from biomass/waste gasification include dust, tars, alkali metals, BTX, sulphur-, nitrogen- and chlorine compounds, and heavy metals. Proper measurement of the components and contaminants of the product gas is essential for the monitoring of gasification-based plants (efficiency, product quality, by-products), as well as for the proper design of the downstream gas cleaning train (for example, scrubbers, sorbents, etc.). The deployment and implementation of inexpensive yet accurate gas analysis techniques to monitor the fate of gas contaminants might play an important role in the commercialization of biomass and waste gasification processes.This special report commissioned by the IEA Bioenergy Task 33 group compiles a representative part of the extensive work developed in the last years by relevant actors in the field of gas analysis applied to (biomass and waste) gasification. The approach of this report has been based on the creation of a team of contributing partners who have supplied material to the report. This networking approach has been complemented with a literature review. This guideline report would like to become a platform for the reinforcement of the network of partners working on the development and application of gas analysis, thus fostering collaboration and exchange of knowledge. As such, this report should become a living document which incorporates in future coming progress and developments in the field.
  •  
7.
  • Nordin, Jakob, et al. (författare)
  • EVIDENCE FOR A CORRELATION BETWEEN THE Si II lambda 4000 WIDTH AND TYPE Ia SUPERNOVA COLOR
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 734:1, s. 42-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the pseudo-equivalent width of the Si II lambda 4000 feature of Type Ia supernovae (SNe Ia) in the redshift range 0.0024 <= z <= 0.634. We find that this spectral indicator correlates with the light curve color excess (SALT2c) as well as previously defined spectroscopic subclasses (Branch types) and the evolution of the Si II lambda 6150 velocity, i.e., the so-called velocity gradient. Based on our study of 55 objects from different surveys, we find indications that the Si II lambda 4000 spectral indicator could provide important information to improve cosmological distance measurements with SNe Ia.
  •  
8.
  • Nordin, Jakob, et al. (författare)
  • Evidence for a correlation between the SiII λ4000 width and Type Ia supernova color
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357.
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the pseudo equivalent width of the SiII λ4000 feature of Type Iasupernovae (SNe Ia) in the redshift range 0.0024 ≤z ≤0.634. We find that this spectral indicator correlateswith the light curve color excess SALT2 c as well as previouslydefined spectroscopic subclasses (Branch types) and theevolution of the  SiII λ6150 velocity, i.e., the so called velocitygradient. Based on our study of 55 objects from different surveys, we find indications that the SiII λ4000 spectral indicatorcould provide important information to improve cosmological distancemeasurements with SNe Ia.
  •  
9.
  • Astier, P., et al. (författare)
  • Extending the supernova Hubble diagram to z similar to 1.5 with the Euclid space mission
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 572, s. A80-
  • Tidskriftsartikel (refereegranskat)abstract
    • We forecast dark energy constraints that could be obtained from a new large sample of Type Ia supernovae where those at high redshift are acquired with the Euclid space mission. We simulate a three-prong SN survey: a z < 0.35 nearby sample (8000 SNe), a 0.2 < z < 0.95 intermediate sample (8800 SNe), and a 0.75 < z < 1.55 high-z sample (1700 SNe). The nearby and intermediate surveys are assumed to be conducted from the ground, while the high-z is a joint ground-and space-based survey. This latter survey, the Dark Energy Supernova Infra-Red Experiment (DESIRE), is designed to fit within 6 months of Euclid observing time, with a dedicated observing programme. We simulate the SN events as they would be observed in rolling-search mode by the various instruments, and derive the quality of expected cosmological constraints. We account for known systematic uncertainties, in particular calibration uncertainties including their contribution through the training of the supernova model used to fit the supernovae light curves. Using conservative assumptions and a 1D geometric Planck prior, we find that the ensemble of surveys would yield competitive constraints: a constant equation of state parameter can be constrained to sigma(omega) = 0.022, and a Dark Energy Task Force figure of merit of 203 is found for a two-parameter equation of state. Our simulations thus indicate that Euclid can bring a significant contribution to a purely geometrical cosmology constraint by extending a high-quality SN Ia Hubble diagram to z similar to 1.5. We also present other science topics enabled by the DESIRE Euclid observations.
  •  
10.
  • Balland, C., et al. (författare)
  • The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 507:1, s. 85-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present 139 spectra of 124 Type Ia supernovae (SNe Ia) that were observed at the ESO/VLT during the first three years of the Canada-France-Hawa Telescope (CFHT) supernova legacy survey (SNLS). This homogeneous data set is used to test for redshift evolution of SN Ia spectra, and will be used in the SNLS 3rd year cosmological analyses. Methods. Spectra have been reduced and extracted with a dedicated pipeline that uses photometric information from deep CFHT legacy survey (CFHT-LS) reference images to trace, at sub-pixel accuracy, the position of the supernova on the spectrogram as a function of wavelength. It also separates the supernova and its host light in similar to 60% of cases. The identification of the supernova candidates is performed using a spectrophotometric SN Ia model. Results. A total of 124 SNe Ia, roughly 50% of the overall SNLS spectroscopic sample, have been identified using the ESO/VLT during the first three years of the survey. Their redshifts range from z = 0.149 to z = 1.031. The average redshift of the sample is z = 0.63 +/- 0.02. This constitutes the largest SN Ia spectral set to date in this redshift range. The spectra are presented along with their best-fit spectral SN Ia model and a host model where relevant. In the latter case, a host subtracted spectrum is also presented. We produce average spectra for pre-maximum, maximum and post-maximum epochs for both z < 0.5 and z >= 0.5 SNe Ia. We find that z < 0.5 spectra have deeper intermediate mass element absorptions than z = 0.5 spectra. The differences with redshift are consistent with the selection of brighter and bluer supernovae at higher redshift.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy