SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bauer J) ;lar1:(nrm)"

Sökning: WFRF:(Bauer J) > Naturhistoriska riksmuseet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Yates, James A. Fellows, et al. (författare)
  • The evolution and changing ecology of the African hominid oral microbiome
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 118:20
  • Tidskriftsartikel (refereegranskat)abstract
    • The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.
  •  
3.
  • Logan, Leslie, 1992-, et al. (författare)
  • Energy Drive for the Kiruna Mining District Mineral System(s): Insights from U-Pb Zircon Geochronology
  • 2022
  • Ingår i: Minerals. - : MDPI. - 2075-163X. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The Kiruna mining district, Sweden, known for the type locality of Kiruna-type iron oxide-apatite (IOA) deposits, also hosts several Cu-mineralized deposits including iron oxide-copper-gold (IOCG), exhalative stratiform Cu-(Fe-Zn), and structurally controlled to stratabound Cu +/- Au. However the relationship between the IOA and Cu-systems has not been contextualized within the regional tectonic evolution. A broader mineral systems approach is taken to assess the timing of energy drive(s) within a regional tectonic framework by conducting U-Pb zircon geochronology on intrusions from areas where Cu-mineralization is spatially proximal. Results unanimously yield U-Pb ages from the early Svecokarelian orogeny (ca. 1923-1867 Ma including age uncertainties), except one sample from the Archean basement (2698 +/- 3 Ma), indicating that a distinct thermal drive from magmatic activity was prominent for the early orogenic phase. A weighted average Pb-207/Pb-206 age of 1877 +/- 10 Ma of an iron-oxide-enriched gabbroic pluton overlaps in age with the Kiirunavaara IOA deposit and is suggested as a candidate for contributing mafic signatures to the IOA ore. The results leave the role of a late energy drive (and subsequent late Cu-mineralization and/or remobilization) ambiguous, despite evidence showing a late regional magmatic-style hydrothermal alteration is present in the district.
  •  
4.
  • Sarlus, Zmar, 1984-, et al. (författare)
  • Timing and origin of the host rocks to the Malmberget iron oxide-apatite deposit, Sweden
  • 2020
  • Ingår i: Precambrian Research. - : Elsevier. - 0301-9268 .- 1872-7433. ; 342
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern Norrbotten region in Sweden hosts abundant iron-oxide apatite (IOA) deposits including Kiirunavaara, the type locality for Kiruna-type deposits, and Malmberget. Felsic and intermediate metavolcanic rocks hosting the Malmberget IOA deposit contain oscillatory zoned zircon which yield magmatic U-Pb SIMS ages of 1885±6 Ma and 1881±6 Ma, respectively. Metamorphic rims on zircon from these rocks yield 1797±7 Ma and 1775±6 Ma, respectively, and record the age of the latest Svecofennian regional metamorphic event in the Gällivare area, tentatively interpreted as regional contact metamorphism. Two granite dikes that cut the ore yield U-Pb zircon emplacement ages of 1790±6 Ma and 1791±7 Ma, respectively, overlapping with the metamorphic overgrowths, and set a lower age limit for ore formation in the Malmberget IOA deposit. Rocks hosting the Malmberget IOA deposit have an alkalic to alkali-calcic affinity with a geochemical signature that favors a continental-arc, transitional to extensional setting. These rocks are suggested to have been generated in a back-arc region, in response to subduction beneath the craton margin retreating to the SW or W. The obtained ages and geochemical signatures of these rocks coincide well with the regionally defined Kiirunavaara group rocks, hosting several other IOA deposits in northern Sweden.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy