SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Baxter R) ;lar1:(umu)"

Search: WFRF:(Baxter R) > Umeå University

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arndt, D. S., et al. (author)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • In: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Research review (peer-reviewed)
  •  
2.
  • Costello, David M., et al. (author)
  • Global patterns and controls of nutrient immobilization on decomposing cellulose in riverine ecosystems
  • 2022
  • In: Global Biogeochemical Cycles. - : John Wiley & Sons. - 0886-6236 .- 1944-9224. ; 36:3
  • Journal article (peer-reviewed)abstract
    • Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature. Collectively, we demonstrated that exogenous nutrient supply and immobilization are critical control points for decomposition of organic matter.
  •  
3.
  • Tiegs, Scott D., et al. (author)
  • Global patterns and drivers of ecosystem functioning in rivers and riparian zones
  • 2019
  • In: Science Advances. - Washington : American Association of Advancement in Science. - 2375-2548. ; 5:1
  • Journal article (peer-reviewed)abstract
    • River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
  •  
4.
  •  
5.
  • Kaarlejärvi, Elina, 1980-, et al. (author)
  • Effects of Warming on Shrub Abundance and Chemistry Drive Ecosystem-Level Changes in a Forest-Tundra Ecotone
  • 2012
  • In: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 15:8, s. 1219-1233
  • Journal article (peer-reviewed)abstract
    • Tundra vegetation is responding rapidly to on-going climate warming. The changes in plant abundance and chemistry might have cascading effects on tundra food webs, but an integrated understanding of how the responses vary between habitats and across environmental gradients is lacking. We assessed responses in plant abundance and plant chemistry to warmer climate, both at species and community levels, in two different habitats. We used a long-term and multisite warming (OTC) experiment in the Scandinavian forest-tundra ecotone to investigate (i) changes in plant community composition and (ii) responses in foliar nitrogen, phosphorus, and carbon-based secondary compound concentrations in two dominant evergreen dwarf-shrubs (Empetrum hermaphroditum and Vaccinium vitis-idaea) and two deciduous shrubs (Vaccinium myrtillus and Betula nana). We found that initial plant community composition, and the functional traits of these plants, will determine the responsiveness of the community composition, and thus community traits, to experimental warming. Although changes in plant chemistry within species were minor, alterations in plant community composition drive changes in community-level nutrient concentrations. In view of projected climate change, our results suggest that plant abundance will increase in the future, but nutrient concentrations in the tundra field layer vegetation will decrease. These effects are large enough to have knock-on consequences for major ecosystem processes like herbivory and nutrient cycling. The reduced food quality could lead to weaker trophic cascades and weaker top down control of plant community biomass and composition in the future. However, the opposite effects in forest indicate that these changes might be obscured by advancing treeline forests.
  •  
6.
  • Patterson, Nick, et al. (author)
  • Large-scale migration into Britain during the Middle to Late Bronze Age
  • 2022
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; , s. 588-594
  • Journal article (peer-reviewed)abstract
    • Present-day people from England and Wales harbour more ancestry derived from Early European Farmers (EEF) than people of the Early Bronze Age1. To understand this, we generated genome-wide data from 793 individuals, increasing data from the Middle to Late Bronze and Iron Age in Britain by 12-fold, and Western and Central Europe by 3.5-fold. Between 1000 and 875 BC, EEF ancestry increased in southern Britain (England and Wales) but not northern Britain (Scotland) due to incorporation of migrants who arrived at this time and over previous centuries, and who were genetically most similar to ancient individuals from France. These migrants contributed about half the ancestry of Iron Age people of England and Wales, thereby creating a plausible vector for the spread of early Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry becoming more similar across central and western Europe in the Middle to Late Bronze Age, coincident with archaeological evidence of intensified cultural exchange2-6. There was comparatively less gene flow from continental Europe during the Iron Age, and Britain's independent genetic trajectory is also reflected in the rise of the allele conferring lactase persistence to ~50% by this time compared to ~7% in central Europe where it rose rapidly in frequency only a millennium later. This suggests that dairy products were used in qualitatively different ways in Britain and in central Europe over this period.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6
Type of publication
journal article (4)
conference paper (1)
research review (1)
Type of content
peer-reviewed (5)
other academic/artistic (1)
Author/Editor
De Eyto, Elvira (3)
Laudon, Hjalmar (2)
Peeters, Edwin T. H. ... (2)
Kosten, Sarian (2)
Rusak, James A. (2)
Leroux, Shawn J. (2)
show more...
Vilbaste, Sirje (2)
Mckie, Brendan (2)
Grossart, Hans-Peter (2)
Derry, Alison M. (2)
LeRoy, Carri J (2)
Kuehn, Kevin A. (2)
Sponseller, Ryan A. (2)
Patrick, Christopher ... (2)
Gessner, Mark O. (2)
Boyero, Luz (2)
Graca, Manuel A. S. (2)
Ferreira, Veronica (2)
Callisto, Marcos (2)
Fleituch, Tadeusz (2)
Frainer, André (2)
Iwata, Tomoya (2)
Yule, Catherine M. (2)
Bruder, Andreas (2)
Iñiguez-Armijos, Car ... (2)
Leavitt, Peter R. (2)
Capps, Krista A. (2)
Zwart, Jacob A. (2)
Costello, David M. (2)
Tiegs, Scott D. (2)
Canhoto, Cristina (2)
Danger, Michael (2)
Frost, Paul C. (2)
Griffiths, Natalie A ... (2)
Marcarelli, Amy M. (2)
Royer, Todd V. (2)
Aroviita, Jukka (2)
Baxter, Colden V. (2)
Burdon, Francis J. (2)
Colas, Fanny (2)
Cornut, Julien (2)
Crespo-Pérez, Veróni ... (2)
Cross, Wyatt F. (2)
Douglas, Michael M. (2)
Elosegi, Arturo (2)
Ferriol, Carmen (2)
Garcia, Erica A. (2)
Giling, Darren P. (2)
Guérold, François (2)
Hepp, Luiz U. (2)
show less...
University
Uppsala University (2)
Swedish University of Agricultural Sciences (2)
University of Gothenburg (1)
Language
English (6)
Research subject (UKÄ/SCB)
Natural sciences (4)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view