SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bellm Eric C.) ;pers:(Hung Tiara)"

Sökning: WFRF:(Bellm Eric C.) > Hung Tiara

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Coughlin, Michael W., et al. (författare)
  • GROWTH on S190425z : Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 885:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The third observing run by LVC has brought the discovery of many compact binary coalescences. Following the detection of the first binary neutron star merger in this run (LIGO/Virgo S190425z), we performed a dedicated follow-up campaign with the Zwicky Transient Facility (ZTF) and Palomar Gattini-IR telescopes. The initial skymap of this single-detector gravitational wave (GW) trigger spanned most of the sky observable from Palomar Observatory. Covering 8000 deg(2) of the initial skymap over the next two nights, corresponding to 46% integrated probability, ZTF system achieved a depth of 21 m(AB) in g- and r-bands. Palomar Gattini-IR covered 2200 square degrees in J-band to a depth of 15.5 mag, including 32% integrated probability based on the initial skymap. The revised skymap issued the following day reduced these numbers to 21% for the ZTF and 19% for Palomar Gattini-IR. We narrowed 338,646 ZTF transient ?alerts? over the first two nights of observations to 15 candidate counterparts. Two candidates, ZTF19aarykkb and ZTF19aarzaod, were particularly compelling given that their location, distance, and age were consistent with the GW event, and their early optical light curves were photometrically consistent with that of kilonovae. These two candidates were spectroscopically classified as young core-collapse supernovae. The remaining candidates were ruled out as supernovae. Palomar Gattini-IR did not identify any viable candidates with multiple detections only after merger time. We demonstrate that even with single-detector GW events localized to thousands of square degrees, systematic kilonova discovery is feasible.
  •  
2.
  • Bellm, Eric C., et al. (författare)
  • The Zwicky Transient Facility : System Overview, Performance, and First Results
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg(2) field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.
  •  
3.
  • Mahabal, Ashish, et al. (författare)
  • Machine Learning for the Zwicky Transient Facility
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:997
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility is a large optical survey in multiple filters producing hundreds of thousands of transient alerts per night. We describe here various machine learning (ML) implementations and plans to make the maximal use of the large data set by taking advantage of the temporal nature of the data, and further combining it with other data sets. We start with the initial steps of separating bogus candidates from real ones, separating stars and galaxies, and go on to the classification of real objects into various classes. Besides the usual methods (e.g., based on features extracted from light curves) we also describe early plans for alternate methods including the use of domain adaptation, and deep learning. In a similar fashion we describe efforts to detect fast moving asteroids. We also describe the use of the Zooniverse platform for helping with classifications through the creation of training samples, and active learning. Finally we mention the synergistic aspects of ZTF and LSST from the ML perspective.
  •  
4.
  • Stein, Robert, et al. (författare)
  • A tidal disruption event coincident with a high-energy neutrino
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; :5, s. 510-518
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux. The tidal disruption event AT2019dsg is probably associated with a high-energy neutrino, suggesting that such events can contribute to the cosmic neutrino flux. The electromagnetic emission is explained in terms of a central engine, a photosphere and an extended synchrotron-emitting outflow.
  •  
5.
  • van Velzen, Sjoert, et al. (författare)
  • The First Tidal Disruption Flare in ZTF : From Photometric Selection to Multi-wavelength Characterization
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 872:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Zwicky Transient Facility (ZTF) observations of the tidal disruption flare AT2018zr/PS18kh reported by Holoien et al. and detected during ZTF commissioning. The ZTF light curve of the tidal disruption event (TDE) samples the rise-to-peak exceptionally well, with 50. days of g- and r-band detections before the time of maximum light. We also present our multi-wavelength follow-up observations, including the detection of a thermal (kT approximate to 100 eV) X-ray source that is two orders of magnitude fainter than the contemporaneous optical/UV blackbody luminosity, and a stringent upper limit to the radio emission. We use observations of 128 known active galactic nuclei (AGNs) to assess the quality of the ZTF astrometry, finding a median host-flare distance of 0.'' 2 for genuine nuclear flares. Using ZTF observations of variability from known AGNs and supernovae we show how these sources can be separated from TDEs. A combination of light-curve shape, color, and location in the host galaxy can be used to select a clean TDE sample from multi-band optical surveys such as ZTF or the Large Synoptic Survey Telescope.
  •  
6.
  • Frederick, Sara, et al. (författare)
  • A Family Tree of Optical Transients from Narrow-line Seyfert 1 Galaxies
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 920:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) has discovered five events (0.01 < z < 0.4) belonging to an emerging class of active galactic nuclei (AGNs) undergoing smooth, large-amplitude, and rapidly rising flares. This sample consists of several transients initially classified as supernovae with narrow spectral lines. However, upon closer inspection, all of the host galaxies display Balmer lines with FWHM(H beta) similar to 900-1400 km s(-1), characteristic of a narrow-line Seyfert 1 (NLSy1) galaxy. The transient events are long lived, over 400 days on average in the observed frame. We report UV and X-ray follow-up of the flares and observe persistent UV emission, with two of the five transients detected with luminous X-ray emission, ruling out a supernova interpretation. We compare the properties of this sample to previously reported flaring NLSy1 galaxies and find that they fall into three spectroscopic categories: 1) Balmer line profiles and Fe ii complexes typical of NLSy1s, 2) strong He ii profiles, and 3) He ii profiles including Bowen fluorescence features. The latter are members of the growing class of AGN flares attributed to enhanced accretion reported by Trakhtenbrot et al. We consider physical interpretations in the context of related transients from the literature. For example, two of the sources show high-amplitude rebrightening in the optical, ruling out a simple tidal disruption event scenario for those transients. We conclude that three of the sample belong to the Trakhtenbrot et al. class and two are tidal disruption events in NLSy1s. We also hypothesize as to why NLSy1s are preferentially the sites of such rapid enhanced flaring activity.
  •  
7.
  • Frederick, Sara, et al. (författare)
  • A New Class of Changing-look LINERs
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 883:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of six active galactic nuclei (AGNs) caught turning on during the first nine months of the Zwicky Transient Facility (ZTF) survey. The host galaxies were classified as low-ionization nuclear emissionline region galaxies (LINERs) by weak narrow forbidden line emission in their archival SDSS spectra, and detected by ZTF as nuclear transients. In five of the cases, we found via follow-up spectroscopy that they had transformed into broad-line AGNs, reminiscent of the changing-look LINER iPTF16bco. In one case, ZTF18aajupnt/ AT2018dyk, follow-up Hubble Space Telescope ultraviolet and ground-based optical spectra revealed the transformation into a narrow-line Seyfert 1 with strong [Fe VII, X, XIV] and He II lambda 4686 coronal lines. Swift monitoring observations of this source reveal bright UV emission that tracks the optical flare, accompanied by a luminous soft X-ray flare that peaks similar to 60 days later. Spitzer follow-up observations also detect a luminous midinfrared flare, implying a large covering fraction of dust. Archival light curves of the entire sample from CRTS, ATLAS, and ASAS-SN constrain the onset of the optical nuclear flaring from a prolonged quiescent state. Here we present the systematic selection and follow-up of this new class of changing-look LINERs, compare their properties to previously reported changing-look Seyfert galaxies, and conclude that they are a unique class of transients well-suited to test the uncertain physical processes associated with the LINER accretion state.
  •  
8.
  • Ho, Anna Y. Q., et al. (författare)
  • Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova : Pre-explosion Emission and a Rapidly Rising Luminous Transient
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 887:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.4 +/- 0.1 mag hr(-1)) and luminous (M-g,M- peak = -20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity (L-bol greater than or similar to 3 x 10(44) erg s(-1)), the short rise time (t(rise) = 3 days in g band), and the blue colors at peak (g-r similar to -0.4) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (T-eff greater than or similar to 40,000 K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (M-g similar to M-r approximate to -14 mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E-gamma,E- iso < 4.9 x 10(48) erg, a limit on X-ray emission L-X < 10(40) erg s(-1), and a limit on radio emission nu L-v less than or similar to 10(37) erg s(-1). Taken together, we find that the early (< 10 days) data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M-circle dot) at large radii (3 x 10(14) cm) that was ejected in eruptive pre-explosion mass-loss episodes. The late-time (> 10 days) light curve requires an additional energy source, which could be the radioactive decay of Ni-56.
  •  
9.
  • van Velzen, Sjoert, et al. (författare)
  • Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations : Entering a New Era of Population Studies
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 908:1
  • Tidskriftsartikel (refereegranskat)abstract
    • While tidal disruption events (TDEs) have long been heralded as laboratories for the study of quiescent black holes, the small number of known TDEs and uncertainties in their emission mechanism have hindered progress toward this promise. Here we present 17 new TDEs that have been detected recently by the Zwicky Transient Facility along with Swift UV and X-ray follow-up observations. Our homogeneous analysis of the optical/UV light curves, including 22 previously known TDEs from the literature, reveals a clean separation of light-curve properties with spectroscopic class. The TDEs with Bowen fluorescence features in their optical spectra have smaller blackbody radii, lower optical luminosities, and higher disruption rates compared to the rest of the sample. The small subset of TDEs that show only helium emission lines in their spectra have the longest rise times, the highest luminosities, and the lowest rates. A high detection rate of Bowen lines in TDEs with small photometric radii could be explained by the high density that is required for this fluorescence mechanism. The stellar debris can provide a source for this dense material. Diffusion of photons through this debris may explain why the rise and fade timescale of the TDEs in our sample are not correlated. We also report, for the first time, the detection of soft X-ray flares from a TDE on similar to day timescales. Based on the fact that the X-ray flares peak at a luminosity similar to the optical/UV blackbody luminosity, we attribute them to brief glimpses through a reprocessing layer that otherwise obscures the inner accretion flow.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy