SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beltran S) ;srt2:(2020-2021);hsvcat:2"

Sökning: WFRF:(Beltran S) > (2020-2021) > Teknik

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Urquhart, J. S., et al. (författare)
  • SEDIGISM-ATLASGAL: Dense gas fraction and star formation efficiency across the Galactic disc
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3050-3063
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining two surveys covering a large fraction of the molecular material in the Galactic disc, we investigate the role spiral arms play in the star formation process. We have matched clumps identified by APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) with their parental giant molecular clouds (GMCs) as identified by SEDIGISM, and use these GMC masses, the bolometric luminosities, and integrated clump masses obtained in a concurrent paper to estimate the dense gas fractions (DGFgmc = ΣMclump/Mgmc) and the instantaneous star formation efficiencies (i.e. SFEgmc = ΣLclump/Mgmc). We find that the molecular material associated with ATLASGAL clumps is concentrated in the spiral arms (∼60 per cent found within ±10 km s-1 of an arm).We have searched for variations in the values of these physical parameters with respect to their proximity to the spiral arms, but find no evidence for any enhancement that might be attributable to the spiral arms. The combined results from a number of similar studies based on different surveys indicate that, while spiral-arm location plays a role in cloud formation and HI to H2 conversion, the subsequent star formation processes appear to depend more on local environment effects. This leads us to conclude that the enhanced star formation activity seen towards the spiral arms is the result of source crowding rather than the consequence of any physical process.
  •  
2.
  • Yagoubov, P., et al. (författare)
  • Wideband 67-116 GHz receiver development for ALMA Band 2
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 634
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Atacama Large Millimeter/submillimeter Array (ALMA) has been in operation since 2011, but it has not yet been populated with the full suite of its planned frequency bands. In particular, ALMA Band 2 (67-90 GHz) is the final band in the original ALMA band definition to be approved for production. Aims. We aim to produce a wideband, tuneable, sideband-separating receiver with 28 GHz of instantaneous bandwidth per polarisation operating in the sky frequency range of 67-116 GHz. Our design anticipates new ALMA requirements following the recommendations of the 2030 ALMA Development Roadmap. Methods. The cryogenic cartridge is designed to be compatible with the ALMA Band 2 cartridge slot, where the coldest components - the feedhorns, orthomode transducers, and cryogenic low noise amplifiers - operate at a temperature of 15 K. We use multiple simulation methods and tools to optimise our designs for both the passive optics and the active components. The cryogenic cartridge is interfaced with a room-temperature (warm) cartridge hosting the local oscillator and the downconverter module. This warm cartridge is largely based on GaAs semiconductor technology and is optimised to match the cryogenic receiver bandwidth with the required instantaneous local oscillator frequency tuning range. Results. Our collaboration has resulted in the design, fabrication, and testing of multiple technical solutions for each of the receiver components, producing a state-of-the-art receiver covering the full ALMA Band 2 and 3 atmospheric window. The receiver is suitable for deployment on ALMA in the coming years and it is capable of dual-polarisation, sideband-separating observations in intermediate frequency bands spanning 4-18 GHz for a total of 28 GHz on-sky bandwidth per polarisation channel. Conclusions. We conclude that the 67-116 GHz wideband implementation for ALMA Band 2 is now feasible and that this receiver provides a compelling instrumental upgrade for ALMA that will enhance observational capabilities and scientific reach.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy