SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Benedetti F.) ;srt2:(2015-2019);lar1:(gu)"

Search: WFRF:(Benedetti F.) > (2015-2019) > University of Gothenburg

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dornelas, M., et al. (author)
  • BioTIME: A database of biodiversity time series for the Anthropocene
  • 2018
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:7, s. 760-786
  • Journal article (peer-reviewed)abstract
    • Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
  •  
2.
  • Aaron-Morrison, Arlene P., et al. (author)
  • State of the climate in 2014
  • 2015
  • In: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 96
  • Journal article (peer-reviewed)abstract
    • Most of the dozens of essential climate variables monitored each year in this report continued to follow their long-term trends in 2014, with several setting new records. Carbon dioxide, methane, and nitrous oxide-the major greenhouse gases released into Earth's atmosphere-once again all reached record high average atmospheric concentrations for the year. Carbon dioxide increased by 1.9 ppm to reach a globally averaged value of 397.2 ppm for 2014. Altogether, 5 major and 15 minor greenhouse gases contributed 2.94 W m-2 of direct radiative forcing, which is 36% greater than their contributions just a quarter century ago. Accompanying the record-high greenhouse gas concentrations was nominally the highest annual global surface temperature in at least 135 years of modern record keeping, according to four independent observational analyses. The warmth was distributed widely around the globe's land areas, Europe observed its warmest year on record by a large margin, with close to two dozen countries breaking their previous national temperature records; many countries in Asia had annual temperatures among their 10 warmest on record; Africa reported above-average temperatures across most of the continent throughout 2014; Australia saw its third warmest year on record, following record heat there in 2013; Mexico had its warmest year on record; and Argentina and Uruguay each had their second warmest year on record. Eastern North America was the only major region to observe a below-average annual temperature. But it was the oceans that drove the record global surface temperature in 2014. Although 2014 was largely ENSO-neutral, the globally averaged sea surface temperature (SST) was the highest on record. The warmth was particularly notable in the North Pacific Ocean where SST anomalies signaled a transition from a negative to positive phase of the Pacific decadal oscillation. In the winter of 2013/14, unusually warm water in the northeast Pacific was associated with elevated ocean heat content anomalies and elevated sea level in the region. Globally, upper ocean heat content was record high for the year, reflecting the continued increase of thermal energy in the oceans, which absorb over 90% of Earth's excess heat from greenhouse gas forcing. Owing to both ocean warming and land ice melt contributions, global mean sea level in 2014 was also record high and 67 mm greater than the 1993 annual mean, when satellite altimetry measurements began. Sea surface salinity trends over the past decade indicate that salty regions grew saltier while fresh regions became fresher, suggestive of an increased hydrological cycle over the ocean expected with global warming. As in previous years, these patterns are reflected in 2014 subsurface salinity anomalies as well. With a now decade-long trans-basin instrument array along 26°N, the Atlantic meridional overturning circulation shows a decrease in transport of-4.2 ± 2.5 Sv decade-1. Precipitation was quite variable across the globe. On balance, precipitation over the world's oceans was above average, while below average across land surfaces. Drought continued in southeastern Brazil and the western United States. Heavy rain during April-June led to devastating floods in Canada's Eastern Prairies. Above-normal summer monsoon rainfall was observed over the southern coast of West Africa, while drier conditions prevailed over the eastern Sahel. Generally, summer monsoon rainfall over eastern Africa was above normal, except in parts of western South Sudan and Ethiopia. The south Asian summer monsoon in India was below normal, with June record dry. Across the major tropical cyclone basins, 91 named storms were observed during 2014, above the 1981-2010 global average of 82. The Eastern/Central Pacific and South Indian Ocean basins experienced significantly above-normal activity in 2014; all other basins were either at or below normal. The 22 named storms in the Eastern/Central Pacific was the basin's most since 1992. Similar to 2013, the North Atlantic season was quieter than most years of the last two decades with respect to the number of storms, despite the absence of El Niño conditions during both years. In higher latitudes and at higher elevations, increased warming continued to be visible in the decline of glacier mass balance, increasing permafrost temperatures, and a deeper thawing layer in seasonally frozen soil. In the Arctic, the 2014 temperature over land areas was the fourth highest in the 115-year period of record and snow melt occurred 20-30 days earlier than the 1998-2010 average. The Greenland Ice Sheet experienced extensive melting in summer 2014. The extent of melting was above the 1981-2010 average for 90% of the melt season, contributing to the second lowest average summer albedo over Greenland since observations began in 2000 and a record-low albedo across the ice sheet for August. On the North Slope of Alaska, new record high temperatures at 20-m depth were measured at four of five permafrost observatories. In September, Arctic minimum sea ice extent was the sixth lowest since satellite records began in 1979. The eight lowest sea ice extents during this period have occurred in the last eight years. Conversely, in the Antarctic, sea ice extent countered its declining trend and set several new records in 2014, including record high monthly mean sea ice extent each month from April to November. On 20 September, a record large daily Antarctic sea ice extent of 20.14 × 106 km2 occurred. The 2014 Antarctic stratospheric ozone hole was 20.9 million km2 when averaged from 7 September to 13 October, the sixth smallest on record and continuing a decrease, albeit statistically insignificant, in area since 1998.
  •  
3.
  • Cunningham, S. G., et al. (author)
  • Core Standards of the EUBIRO Project Defining a European Diabetes Data Dictionary for Clinical Audit and Healthcare Delivery
  • 2016
  • In: Methods of Information in Medicine. - : Georg Thieme Verlag KG. - 0026-1270 .- 2511-705X. ; 55:2, s. 166-176
  • Journal article (peer-reviewed)abstract
    • Background: A set of core diabetes indicators were identified in a clinical review of current evidence for the EUBIROD project. In order to allow accurate comparisons of diabetes indicators, a standardised currency for data storage and aggregation was required. We aimed to define a robust European data dictionary with appropriate clinical definitions that can be used to analyse diabetes outcomes and provide the foundation for data collection from existing electronic health records for diabetes. Methods: Existing clinical datasets used by 15 partner institutions across Europe were collated and common data items analysed for consistency in terms of recording, data definition and units of measurement. Where necessary, data mappings and algorithms were specified in order to allow partners to meet the standard definitions. A series of descriptive elements were created to document metadata for each data item, including recording, consistency, completeness and quality. Results: While datasets varied in terms of consistency, it was possible to create a common standard that could be used by all. The minimum dataset defined 53 data items that were classified according to their feasibility and validity. Mappings and standardised definitions were used to create an electronic directory for diabetes care, providing the foundation for the EUBIROD data analysis repository, also used to implement the diabetes registry and model of care for Cyprus. Conclusions: The development of data dictionaries and standards can be used to improve the quality and comparability of health information. A data dictionary has been developed to be compatible with other existing data sources for diabetes, within and beyond Europe.
  •  
4.
  • Cunningham, S G, et al. (author)
  • Core Standards of the EUBIROD Project. Defining a European Diabetes Data Dictionary for Clinical Audit and Healthcare Delivery.
  • 2016
  • In: Methods of information in medicine. - 2511-705X. ; 55:2, s. 166-76
  • Journal article (peer-reviewed)abstract
    • A set of core diabetes indicators were identified in a clinical review of current evidence for the EUBIROD project. In order to allow accurate comparisons of diabetes indicators, a standardised currency for data storage and aggregation was required. We aimed to define a robust European data dictionary with appropriate clinical definitions that can be used to analyse diabetes outcomes and provide the foundation for data collection from existing electronic health records for diabetes.Existing clinical datasets used by 15 partner institutions across Europe were collated and common data items analysed for consistency in terms of recording, data definition and units of measurement. Where necessary, data mappings and algorithms were specified in order to allow partners to meet the standard definitions. A series of descriptive elements were created to document metadata for each data item, including recording, consistency, completeness and quality.While datasets varied in terms of consistency, it was possible to create a common standard that could be used by all. The minimum dataset defined 53 data items that were classified according to their feasibility and validity. Mappings and standardised definitions were used to create an electronic directory for diabetes care, providing the foundation for the EUBIROD data analysis repository, also used to implement the diabetes registry and model of care for Cyprus.The development of data dictionaries and standards can be used to improve the quality and comparability of health information. A data dictionary has been developed to be compatible with other existing data sources for diabetes, within and beyond Europe.
  •  
5.
  • Tharaud, M., et al. (author)
  • TiO2 nanomaterial detection in calcium rich matrices by spICPMS. A matter of resolution and treatment
  • 2017
  • In: Journal of Analytical Atomic Spectrometry. - : Royal Society of Chemistry (RSC). - 0267-9477 .- 1364-5544. ; 32:7, s. 1400-1411
  • Journal article (peer-reviewed)abstract
    • High Ca concentrations in complex matrices such as river waters often hamper the detection of titanium nanomaterials (TiO2 NPs) by single particle inductively coupled plasma mass spectrometry (spICPMS), because of isobaric interference of Ca-48 on the most abundant Ti isotope (Ti-48). Several approaches were used to reduce this interference while measuring TiO2 in solutions with different Ca concentrations up to 100 mg L-1. ICP-MS/MS was used with ammonia as the reaction ceLL gas and high resoLution (HR) ICP-MS was used under different resoLution settings. These approaches were compared by measuring different Ti isotopes (Ti-47 and Ti-49). spICPMS data were then treated with a deconvoLution method to filter out dissolved signals and identify the best approach to detect the Lowest possible corresponding spherical size of TiO2 NPs (D,in). ICP-MS/MS aLLowed for an important decrease of the theoretical D-min compared to standard quadrupole ICP-MS, down to 64 nm in uLtrapure water; however the sensitivity was reduced by the reaction gas and increasing Ca concentrations also increased the D-min. The comparably higher sensitivity of HR-ICP-MS aLLowed for theoretically measuring a D-min of 10 nm in uLtrapure water. Combined with the deconvoLution analysis, the highest resoLution mode in HR-ICP-MS Leads to the Lowest D-min at high Ca concentrations, even though significant broadening of the measured mass distributions occurred for TiO2 NPs at Ca concentrations up to 100 mg L-1.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view