SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bergdahl Ingvar A) ;pers:(Liljelind Ingrid E)"

Sökning: WFRF:(Bergdahl Ingvar A) > Liljelind Ingrid E

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergdahl, Ingvar A, et al. (författare)
  • Plasma-lead concentration: investigations into its usefulness for biological monitoring of occupational lead exposure.
  • 2006
  • Ingår i: American journal of industrial medicine. - New York : Wiley. - 0271-3586 .- 1097-0274. ; 49:2, s. 93-101
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The lead concentration in plasma is correlated to that in whole blood with a two to fourfold variation. It has never been investigated if this variation is inter-individual. METHODS: Lead and hemoglobin were determined in blood and plasma from 13 lead workers with a history of relatively high blood-lead concentrations, sampled three times during 1 day. The variation in the distribution of lead between cells and plasma was studied, but not the variation in the lead concentrations as such. RESULTS: Blood hemoglobin decreased with rising plasma lead (0.9-3.0 microg/L). Regarding the distribution of lead, no effect of current exposure during the day or of recent meals appeared. As much as 84% of the overall variance of the distribution of lead between cells and plasma could be attributed to individual factors. After adjustment for erythrocyte volume fraction this decreased to 67%. Plasma samples with elevated hemoglobin concentrations (due to in vitro hemolysis) had somewhat elevated lead concentrations. CONCLUSIONS: Plasma lead is not significantly altered by variation in a single day's exposure and, therefore, the choice of time of the day is not critical for sampling. However, plasma lead is negatively correlated to blood hemoglobin and mild hemolysis (not visible by the eye) in a sample may increase plasma lead with up to 30%. Finally, plasma provides lead exposure information that differs from whole blood, but it is not clear which one of these is the biomarker with the closest relation to exposure and/or effects.
  •  
2.
  • Lampa, Erik G., et al. (författare)
  • Optimizing occupational exposure measurement strategies when estimating the log-scale arithmetic mean value : An example from the reinforced plastics industry
  • 2006
  • Ingår i: Annals of Occupational Hygiene. - Oxford : Pergamon Press. - 0003-4878 .- 1475-3162. ; 50:4, s. 371-377
  • Tidskriftsartikel (refereegranskat)abstract
    • When assessing occupational exposures, repeated measurements are in most cases required. Repeated measurements are more resource intensive than a single measurement, so careful planning of the measurement strategy is necessary to assure that resources are spent wisely. The optimal strategy depends on the objectives of the measurements. Here, two different models of random effects analysis of variance (ANOVA) are proposed for the optimization of measurement strategies by the minimization of the variance of the estimated log-transformed arithmetic mean value of a worker group, i.e. the strategies are optimized for precise estimation of that value. The first model is a one-way random effects ANOVA model. For that model it is shown that the best precision in the estimated mean value is always obtained by including as many workers as possible in the sample while restricting the number of replicates to two or at most three regardless of the size of the variance components. The second model introduces the ‘shared temporal variation’ which accounts for those random temporal fluctuations of the exposure that the workers have in common. It is shown for that model that the optimal sample allocation depends on the relative sizes of the between-worker component and the shared temporal component, so that if the between-worker component is larger than the shared temporal component more workers should be included in the sample and vice versa. The results are illustrated graphically with an example from the reinforced plastics industry. If there exists a shared temporal variation at a workplace, that variability needs to be accounted for in the sampling design and the more complex model is recommended.
  •  
3.
  • Shirdel, Mariam, et al. (författare)
  • A pilot study : the UNC passive aerosol sampler in a working environment
  • 2017
  • Ingår i: Annals of Work Exposures and Health. - : Oxford University Press. - 2398-7308 .- 2398-7316. ; 61:8, s. 1029-1034
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Dust is generally sampled on a filter using air pumps, but passive sampling could be a cost-effective alternative. One promising passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). The aim of this study is to characterize and compare the UNC sampler’s performance with PM10 and PM2.5 impactors in a working environment.Methods: Area sampling was carried out at different mining locations using UNC samplers in parallel with PM2.5 and PM10 impactors. Two different collection surfaces, polycarbonate (PC) and carbon tabs (CT), were employed for the UNC sampling. Sampling was carried out for 4–25 hours.Results: The UNC samplers underestimated the concentrations compared to PM10 and PM2.5 impactor data. At the location with the highest aerosol concentration, the time-averaged mean of PC showed 24% and CT 35% of the impactor result for PM2.5. For PM10, it was 39% with PC and 58% with CT. Sample blank values differed between PC and CT. For PM2.5, PC blank values were ~7 times higher than those of CT, but only 1.8 times higher for PM10. The blank variations were larger for PC than for CT.Conclusions: Particle mass concentrations appear to be underestimated by the UNC sampler compared to impactors, more so for PM2.5 than for PM10. CT may be preferred as a collection surface because the blank values were lower and less variable than for PC. Future validations in the working environment should include respirable dust sampling.
  •  
4.
  •  
5.
  • Shirdel, Mariam, et al. (författare)
  • Choosing the number of images and image position when analysing the UNC Passive Aerosol Sampler for occupational exposure assessment
  • 2018
  • Ingår i: Journal of Occupational and Environmental Hygiene. - : Taylor & Francis. - 1545-9624 .- 1545-9632. ; 15:11, s. 767-772
  • Tidskriftsartikel (refereegranskat)abstract
    • The University of North Carolina passive aerosol sampler (UNC sampler) could be an alternative when measuring occupational dust exposure, but the time required for microscopic imaging of the sampler needs to be reduced to make it more attractive. The aims of this study were to 1) characterise the effect on precision when reducing imaging, in order to shorten analysis time and 2) assess if the position of the images makes a difference. Eighty-eight samplers were deployed in different locations of an open pit mine. Sixty images were captured for each UNC sampler, covering 51% of its collection surface, using scanning electron microscopy. Bootstrapped samples were generated with different image combinations, to assess the within-sampler coefficient of variation (CVws) for different numbers of images. In addition, the particle concentration relative to the distance from the centre of the sampler was studied. Reducing the number of images collected from the UNC sampler led to up to 8.3% CVws for ten images when calculating respirable fraction. As the overall CV has previously been assessed to 36%, the additional contribution becomes minimal, increasing the overall CV to 37%. The mean concentrations of the images were modestly related to distance from the centre of the sampler. The CVws changed from 8.26% to 8.13% for ten images when applying rules for the image collection based on distance. Thus, the benefit of these rules on the precision is small and the images can therefore be chosen at random. In conclusion, reducing the number of images analysed from 60 to 10, corresponding to a reduction of the imaged sampling area from 51% to 8.5%, results in a negligible loss in precision for respirable fraction dust measurements in occupational environments.
  •  
6.
  • Shirdel, Mariam, et al. (författare)
  • Passive personal air sampling of dust in a working environment : A pilot study
  • 2019
  • Ingår i: Journal of Occupational and Environmental Hygiene. - : Taylor & Francis Group. - 1545-9624 .- 1545-9632. ; 16:10, s. 675-684
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to make a preliminary evaluation of the University of North Carolina passive aerosol sampler (UNC sampler) for personal air sampling of particles. Nine personal air samplings of respirable fraction were conducted in an open-pit mine, with pairwise UNC samplers and a respirable cyclone mounted on the chest of workers. UNC samples were analyzed with scanning electron microscopy (SEM) and to some extent energy dispersive X-ray spectroscopy (EDS). Respirable cyclone filter samples were weighed. Correlations and particle elemental compositions were described. Microscopic imaging of the collection surface showed that the particles were heterogeneously deposited across the surface of the UNC sampler. Collected particles were shaped as gravel particles and the resulting particle size distribution in air showed a peak at ca. 3 µm aerodynamic diameter, similarly to what has previously been reported from the same mine. The elemental composition indicated mineral origin. All correlations between the airborne mass concentrations from UNC samplers and respirable cyclones (Pearson = 0.54 and Spearman = 0.43) and between pairs of parallel UNC samplers (Pearson = 0.55 and Spearman = 0.67) were weak. The UNC sampler mass concentrations were approximately 30 times higher than those measured with the respirable cyclone. In conclusion, the UNC sampler, when used for personal sampling in a mine, provides a reasonable particle size distribution and the deposited particles appeared to be of mineral origin and not from textile or skin but the approximately 30-fold overestimation of mass concentrations when comparing with respirable cyclone sampling indicates that further improvements are necessary. Positioning of the sampler may be critical and moving the UNC sampler from the chest to e.g. the top of a helmet might be an improvement. Grounding of the sampler in order to avoid static electricity might also be useful. The UNC sampler should continue to be researched for personal sampling, as passive sampling might become a useful alternative to more laborious sampling techniques.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy