SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bergström Anna) ;pers:(Bergström Hans 1952)"

Search: WFRF:(Bergström Anna) > Bergström Hans 1952

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Nilsson, Erik, 1983-, et al. (author)
  • Evaluating humidity and sea salt disturbances on CO2 flux measurements
  • 2018
  • In: Journal of Atmospheric and Oceanic Technology. - 0739-0572 .- 1520-0426. ; 35, s. 859-875
  • Journal article (peer-reviewed)abstract
    • Global oceans are an important sink of atmospheric carbon dioxide (CO2). Therefore, understanding the air-sea flux of CO2 is a vital part in describing the global carbon balance. Eddy covariance (EC) measurements are often used to study CO2 fluxes from both land and ocean. CO2 are usually measured with infrared absorption sensors, which at the same time measure water vapor. Studies have shown that presence of water vapor fluctuations in the sampling air potentially result in erroneous CO2 flux measurements due to cross-sensitivity of the sensor. Here we compare measured CO2 fluxes from both enclosed path Li-Cor 7200 sensors and open-path Li-Cor 7500 instruments from an inland measurement site and a marine site. We also introduce new quality control criteria based upon a Relative Signal Strength Indicator (RSSI). The sampling gas in one of the Li-Cor 7200 instruments was dried by means of a multi-tube diffusion dryer so that the water vapor fluxes were close to zero. With this setup we investigated the effect that cross-sensitivity of the CO2 signal to water vapor can have on the CO2 fluxes. The dryer had no significant effect on the CO2 fluxes. We tested the hypothesis that the cross-sensitivity effect is caused by hygroscopic particles such as sea salt by spraying a saline solution on the windows of the Li-Cor 7200 instruments during the inland field test. Our results confirm earlier findings that sea salt contamination can affect CO2 fluxes significantly and confirm earlier findings, that drying the sampling air for the gas analyzer is an effective method to reduce this signal contamination.
  •  
2.
  • Molinder, Jennie, et al. (author)
  • Probabilistic forecasting of wind power production losses in cold climates : a case study
  • 2018
  • In: Wind Energy Science. - : Copernicus GmbH. - 2366-7443 .- 2366-7451. ; 3, s. 667-680
  • Journal article (peer-reviewed)abstract
    • The problem of icing on wind turbines in cold climates is addressed using probabilistic forecasting to improve next-day forecasts of icing and related production losses. A case study of probabilistic forecasts was generated for a 2-week period. Uncertainties in initial and boundary conditions are represented with an ensemble forecasting system, while uncertainties in the spatial representation are included with a neighbourhood method. Using probabilistic forecasting instead of one single forecast was shown to improve the forecast skill of the ice-related production loss forecasts and hence the icing forecasts. The spread of the multiple forecasts can be used as an estimate of the forecast uncertainty and of the likelihood for icing and severe production losses. Best results, both in terms of forecast skill and forecasted uncertainty, were achieved using both the ensemble forecast and the neighbourhood method combined. This demonstrates that the application of probabilistic forecasting for wind power in cold climates can be valuable when planning next-day energy production, in the usage of de-icing systems and for site safety.
  •  
3.
  • Molinder, Jennie, et al. (author)
  • Probabilistic Forecasting of Wind Turbine Icing Related Production Losses Using Quantile Regression Forests
  • 2021
  • In: Energies. - BASEL, SWITZERLAND : MDPI. - 1996-1073. ; 14:1
  • Journal article (peer-reviewed)abstract
    • A probabilistic machine learning method is applied to icing related production loss forecasts for wind energy in cold climates. The employed method, called quantile regression forests, is based on the random forest regression algorithm. Based on the performed tests on data from four Swedish wind parks available for two winter seasons, it has been shown to produce valuable probabilistic forecasts. Even with the limited amount of training and test data that were used in the study, the estimated forecast uncertainty adds more value to the forecast when compared to a deterministic forecast and a previously published probabilistic forecast method. It is also shown that the output from a physical icing model provides useful information to the machine learning method, as its usage results in an increased forecast skill when compared to only using Numerical Weather Prediction data. A potential additional benefit in machine learning for some stations was also found when using information in the training from other stations that are also affected by icing. This increases the amount of data, which is otherwise a challenge when developing forecasting methods for wind energy in cold climates.
  •  
4.
  • Rutgersson, Anna, 1971-, et al. (author)
  • Using land-based stations for air–sea interaction studies
  • 2020
  • In: Tellus. Series A, Dynamic meteorology and oceanography. - : Informa UK Limited. - 0280-6495 .- 1600-0870. ; 72:1, s. 1-23
  • Journal article (peer-reviewed)abstract
    • In situ measurements representing the marine atmosphere and air-sea interaction are taken at ships, buoys, stationary moorings and land-based towers, where each observation platform has structural restrictions. Air-sea fluxes are often small, and due to the limitations of the sensors, several corrections are applied. Land-based towers are convenient for long-term observations, but one critical aspect is the representativeness of marine conditions. Hence, a careful analysis of the sites and the data is necessary. Based on the concept of flux footprint, we suggest defining flux data from land-based marine micrometeorological sites in categories depending on the type of land influence:1. CAT1: Marine data representing open sea,2. CAT2: Disturbed wave field resulting in physical properties different from open sea conditions and heterogeneity of water properties in the footprint region, and3. CAT3: Mixed land-sea footprint, very heterogeneous conditions and possible active carbon production/consumption.Characterization of data would be beneficial for combined analyses using several sites in coastal and marginal seas and evaluation/comparison of properties and dynamics. Aerosol fluxes are a useful contribution to characterizing a marine micrometeorological field station; for most conditions, they change sign between land and sea sectors. Measured fluxes from the land-based marine station Ostergarnsholm are used as an example of a land-based marine site to evaluate the categories and to present an example of differences between open sea and coastal conditions. At the Ostergarnsholm site the surface drag is larger for CAT2 and CAT3 than for CAT1 when wind speed is below 10m/s. The heat and humidity fluxes show a distinctive distinguished seasonal cycle; latent heat flux is larger for CAT2 and CAT3 compared to CAT1. The flux of carbon dioxide is large from the coastal and land-sea sectors, showing a large seasonal cycle and significant variability (compared to the open sea sector). Aerosol fluxes are partly dominated by sea spray emissions comparable to those observed at other open sea conditions.
  •  
5.
  •  
6.
  • Svensson, Nina, 1988-, et al. (author)
  • A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface
  • 2017
  • In: Advances in Meteorology. - : Hindawi Limited. - 1687-9309 .- 1687-9317. ; 2017
  • Journal article (peer-reviewed)abstract
    • Streaky structures of narrow (8-9 km) high wind belts have been observed from SAR images above the Baltic Sea during stably stratified conditions with offshore winds from the southern parts of Sweden. Case studies using the WRF model and in situ aircraft observations indicate that the streaks originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30-80 km off the coast, in agreement with the streaks observed by the SAR images. During evening when the convective conditions over land diminish, the streaky structures over the sea are still seen in the horizontal wind field; however, the vertical component is close to zero. Thus advected feature from a land surface can affect the wind field considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered during spring in coastal regions at high latitudes.
  •  
7.
  • Svensson, Nina, 1988-, et al. (author)
  • Measurements and Modelling of Offshore Wind Profiles in a Semi-Enclosed Sea
  • 2019
  • In: Atmosphere. - : MDPI AG. - 2073-4433 .- 2073-4433. ; 10:4
  • Journal article (peer-reviewed)abstract
    • A conically scanning, continuous-wave LIDAR is placed on an island in the central Baltic Sea with large open-water fetch, providing wind and turbulence profiles up to 300 m height. LIDAR and Weather Research and Forecasting (WRF) profiles from one year are used to characterize the marine boundary layer, at the same time performing an evaluation of the WRF model against LIDAR measurements with a focus on low-level jet representation. A good agreement is found between the average wind speed profile in WRF and LIDAR, with the largest bias occurring during stable conditions. The LLJ frequency is highest in May with frequency of occurrence ranging between 18% and 27% depending on the method of detection. Most of the LLJs occur during nighttime, indicating that most of them do not have local origin. For cases with simultaneous LLJs in both data sets the WRF agrees well with the LIDAR. In many cases, however, the LLJ is misplaced in time or space in the WRF simulations compared to the LIDAR. This shows that models still must be improved to capture mesoscale effects in the coastal zone.
  •  
8.
  • Svensson, Nina, 1988-, et al. (author)
  • Modification of the Baltic Sea wind field by land-sea interaction
  • 2019
  • In: Wind Energy. - : Wiley. - 1095-4244 .- 1099-1824. ; 22:6, s. 764-779
  • Journal article (peer-reviewed)abstract
    • The wind and turbulence fields over a small, high‐latitude sea are investigated. These fields are highly influenced by the proximity to the coast, which is never more than 200 km away. Simulations with the WRF model over the Baltic Sea are compared with a simplified, stationary wind model driven by the synoptic forcing. The difference between the models is therefore representative of the mesoscale influence. The results show that the largest wind‐field modifications compared with a neutral atmosphere occur during spring and summer, with a mean monthly increase of up to approximately 1 ms−1 at typical hub heights and upper rotor area (120‐170 m height) in the WRF model. The main reason for this is large‐scale low‐level jets caused by the land‐sea temperature differences, likely increasing in strength due to inertial oscillations. These kind of events can be persistent for approximately 12 hours and cover almost the entire basin, causing wind speed and wind shear to increase considerably. The strongest effect is around 2000 to 2300 local time. Sea breezes and coastal low‐level jets are of less importance, but while sea breezes are mostly detected near the coastline, other types of coastal jets can extend large distances off the coast. During autumn and winter, there are fewer low‐level jet occurrences, but the wind profile cannot be explained by the classical theory of the one‐dimensional model. This indicates that the coastal environment is complex and may be affected by advection from land surfaces to a large degree even when unstable conditions dominate.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view