SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Berne C) ;pers:(Ärnlöv Johan)"

Search: WFRF:(Berne C) > Ärnlöv Johan

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Locke, Adam E, et al. (author)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Journal article (peer-reviewed)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
2.
  •  
3.
  • Shungin, Dmitry, et al. (author)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Journal article (peer-reviewed)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
4.
  • Ahmad, Shafqat, et al. (author)
  • Effect of General Adiposity and Central Body Fat Distribution on the Circulating Metabolome : A Multi-Cohort Nontargeted Metabolomics Observational and Mendelian Randomization Study
  • 2022
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 71:2, s. 329-339
  • Journal article (peer-reviewed)abstract
    • Obesity is associated with adverse health outcomes, but the metabolic effects have not yet been fully elucidated. We aimed to investigate the association between adiposity with circulating metabolites and to address causality with Mendelian randomization (MR). Metabolomics data was generated by non-targeted ultra-performance liquid-chromatography coupled to time-of-flight mass-spectrometry in plasma and serum from three population-based Swedish cohorts: ULSAM (N=1,135), PIVUS (N=970), and TwinGene (N=2,059). We assessed associations between general adiposity measured as body mass index (BMI) and central body fat distribution measured as waist-to-hip ratio adjusted for BMI (WHRadjBMI) with 210 annotated metabolites. We employed MR analysis to assess causal effects. Lastly, we attempted to replicate the MR findings in the KORA and TwinsUK cohorts (N=7,373), the CHARGE consortium (N=8,631), the Framingham Heart Study (N=2,076) and the DIRECT consortium (N=3,029). BMI was associated with 77 metabolites, while WHRadjBMI was associated with 11 and 3 metabolites in women and men, respectively. The MR analyses in the Swedish cohorts suggested a causal association (p-value <0.05) of increased general adiposity and reduced levels of arachidonic acid, dodecanedioic acid and lysophosphatidylcholine (P-16:0) as well as with increased creatine levels. The replication effort provided support for a causal association of adiposity on reduced levels of arachidonic acid (p-value 0.03). Adiposity is associated with variation of large parts of the circulating metabolome, however causality needs further investigation in well-powered cohorts.
  •  
5.
  •  
6.
  • Ärnlöv, Johan, et al. (author)
  • Serum and dietary beta-carotene and alpha-tocopherol and incidence of type 2 diabetes mellitus in a community-based study of Swedish men : report from the Uppsala Longitudinal Study of Adult Men (ULSAM) study
  • 2009
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 52:1, s. 97-105
  • Journal article (peer-reviewed)abstract
    • AIMS/HYPOTHESIS: To investigate the association of serum concentrations and dietary intake of beta-carotene and alpha-tocopherol with type 2 diabetes incidence. METHODS: Serum beta-carotene, alpha-tocopherol, lifestyle factors (BMI, physical activity and smoking) and metabolic factors (insulin sensitivity [homeostasis model assessment], acute insulin response and impaired fasting glucose) were analysed in 846 50-year-old non-diabetic Swedish men (participants in the Uppsala Longitudinal Study of Adult Men). Diabetes was identified in 245 participants at reinvestigations after 10, 20 and 27 years. At the 20 year reinvestigation, dietary intake of beta-carotene and alpha-tocopherol, insulin sensitivity (euglycaemic-hyperinsulinaemic clamp) and insulin secretion (early insulin response in OGTT) were determined. RESULTS: The highest tertile of serum beta-carotene at age 50 (>0.335 mumol/l) was associated with 59% lower risk of diabetes during follow-up compared with the lowest tertile (<0.210 mumol/l) after adjustment for lifestyle and metabolic factors (p < 0.01). The highest tertile of lipid-corrected serum alpha-tocopherol at age 50 (>3.67 mumol/mmol) was associated with 46% lower risk of diabetes compared with the lowest tertile (<3.25 mumol/mmol) independently of metabolic factors (p < 0.05). Moreover, lower serum beta-carotene and alpha-tocopherol concentrations were independently associated with impaired insulin sensitivity (p < 0.001), but not with early insulin response, in a subsample of non-diabetic individuals 20 years later. Dietary intake of beta-carotene and alpha-tocopherol independently predicted type 2 diabetes during 7 years of follow-up. CONCLUSIONS/INTERPRETATION: Serum concentrations and dietary intakes of beta-carotene and alpha-tocopherol independently predicted insulin resistance and type 2 diabetes incidence during 27 years of follow-up in a community-based study of men. This result supports the importance of impaired antioxidant status for the development of insulin resistance and type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view