SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bezard Erwan) ;hsvcat:1"

Search: WFRF:(Bezard Erwan) > Natural sciences

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kaya, Ibrahim, et al. (author)
  • On-Tissue Chemical Derivatization for Comprehensive Mapping of Brain Carboxyl and Aldehyde Metabolites by MALDI-MS Imaging
  • 2023
  • In: Journal of the American Society for Mass Spectrometry. - : American Chemical Society (ACS). - 1044-0305 .- 1879-1123. ; 34:5, s. 836-846
  • Journal article (peer-reviewed)abstract
    • The visualization of small metabolites by MALDI mass spectrometry imaging in brain tissue sections is challenging due to low detection sensitivity and high background interference. We present an on-tissue chemical derivatization MALDI mass spectrometry imaging approach for the comprehensive mapping of carboxyls and aldehydes in brain tissue sections. In this approach, the AMPP (1-(4-(aminomethyl)phenyl)pyridin-1-ium chloride) derivatization reagent is used for the covalent charge-tagging of molecules containing carboxylic acid (in the presence of peptide coupling reagents) and aldehydes. This includes free fatty acids and the associated metabolites, fatty aldehydes, dipeptides, neurotoxic reactive aldehydes, amino acids, neurotransmitters and associated metabolites, as well as tricarboxylic acid cycle metabolites. We performed sensitive ultrahigh mass resolution MALDI-MS detection and imaging of various carboxyl-and aldehyde containing endogenous metabolites simultaneously in rodent brain tissue sections. We verified the AMPP-derivatized metabolites by tandem MS for structural elucidation. This approach allowed us to image numerous aldehydes and carboxyls, including certain metabolites which had been undetectable in brain tissue sections. We also demonstrated the application of on-tissue derivatization to carboxyls and aldehydes in coronal brain tissue sections of a nonhuman primate Parkinson's disease model. Our methodology provides a powerful tool for the sensitive, simultaneous spatial molecular imaging of numerous aldehydes and carboxylic acids during pathological states, including neurodegeneration, in brain tissue.
  •  
2.
  • Fridjonsdottir, Elva, et al. (author)
  • Mass spectrometry imaging reveals brain-region specific changes in metabolism and acetylcholine levels in experimental Parkinson’s disease and L-DOPA-induced dyskinesia
  • Other publication (other academic/artistic)abstract
    • There is evidence that cholinergic alterations are linked to various motor and non-motor symptoms of Parkinson’s disease. We therefore used mass spectrometry imaging to investigate regional changes in acetylcholine abundance in the brain of a non-human primate model of Parkinson’s disease (PD) and L-DOPA-induced dyskinesia (LID). We also present an experimental design for performing untargeted analysis using MALDI-MSI with multiple experiments incorporating quality control samples to monitor experimental variability. We observed that MPTP treatment (i) led to reductions in putaminal acetylcholine levels that persisted after L-DOPA treatment and (ii) appeared to induce a shift of choline metabolism from α-glycerophosphocholine towards betaine. LID animals exhibited reduced levels of various metabolites important for brain homeostasis including S-adenosylmethionine, glutathione, adenosine monophosphate, and acylcarnitines. The vasculature marker heme B was upregulated in the putamen of LID animals, suggesting increased blood-flow in the dyskinetic putamen. These results provide new insights into pathological choline-related metabolic changes in PD and LID.  
  •  
3.
  • Hulme, Heather, et al. (author)
  • Mass spectrometry imaging of multiple basal ganglia neuropeptides shows abnormal neuropeptide processing associated with L-DOPA-induced dyskinesia in a primate model of Parkinson’s disease
  • Other publication (other academic/artistic)abstract
    • L-DOPA administration is the primary treatment for Parkinson’s disease (PD) but long-term administration is usually accompanied by hyperkinetic side-effects called L-DOPA-induced dyskinesia (LID). Signalling neuropeptides of the basal ganglia are affected in LID and alterations in the expression of neuropeptide precursors have been described, but the final products of the precursors are not well defined and regionally mapped. Thus, we used matrix-assisted laser desorption/ionization mass spectrometry imaging to visualize and quantify neuropeptides in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposed parkinsonian and LID Macaca mulatta brain samples. We found that the abundance of some abnormally processed peptides—des-tyrosine dynorphins, substance P (1-7) and substance P (1-9)—correlated with dyskinesia severity in multiple brain regions. Other dynorphins, α-neoendorphin and neurokinin A correlated with regional L-DOPA or dopamine levels in the internal and external globus pallidus. Our results demonstrate that the abundance of selected active neuropeptides is associated with local L-DOPA and dopamine concentrations, but the severity of LID is associated with loss of N-terminal tyrosine from dynorphin peptides and C-terminal truncation of substance P peptides, modifications that generally reduce the neuropeptides’ activity. 
  •  
4.
  • Kaya, Ibrahim, et al. (author)
  • Spatial lipidomics reveals brain region-specific changes of sulfatides in an experimental MPTP Parkinson's disease primate model
  • 2023
  • In: NPJ PARKINSONS DISEASE. - : Springer Nature. - 2373-8057. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Metabolism of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to the neurotoxin MPP+ in the brain causes permanent Parkinson's disease-like symptoms by destroying dopaminergic neurons in the pars compacta of the substantia nigra in humans and non-human primates. However, the complete molecular pathology underlying MPTP-induced parkinsonism remains poorly understood. We used dual polarity matrix-assisted laser desorption/ionization mass spectrometry imaging to thoroughly image numerous glycerophospholipids and sphingolipids in coronal brain tissue sections of MPTP-lesioned and control non-human primate brains (Macaca mulatta). The results revealed specific distributions of several sulfatide lipid molecules based on chain-length, number of double bonds, and importantly, hydroxylation stage. More specifically, certain long-chain hydroxylated sulfatides with polyunsaturated chains in the molecular structure were depleted within motor-related brain regions in the MPTP-lesioned animals, e.g., external and internal segments of globus pallidus and substantia nigra pars reticulata. In contrast, certain long-chain non-hydroxylated sulfatides were found to be elevated within the same brain regions. These findings demonstrate region-specific dysregulation of sulfatide metabolism within the MPTP-lesioned macaque brain. The depletion of long-chain hydroxylated sulfatides in the MPTP-induced pathology indicates oxidative stress and oligodendrocyte/myelin damage within the pathologically relevant brain regions. Hence, the presented findings improve our current understanding of the molecular pathology of MPTP-induced parkinsonism within primate brains, and provide a basis for further research regarding the role of dysregulated sulfatide metabolism in PD.
  •  
5.
  • Shariatgorji, Mohammadreza, et al. (author)
  • Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging
  • 2019
  • In: Nature Methods. - : NATURE PUBLISHING GROUP. - 1548-7091 .- 1548-7105. ; 16:10, s. 1021-1028
  • Journal article (peer-reviewed)abstract
    • We present a mass spectrometry imaging (MSI) approach for the comprehensive mapping of neurotransmitter networks in specific brain regions. Our fluoromethylpyridinium-based reactive matrices facilitate the covalent charge-tagging of molecules containing phenolic hydroxyl and/or primary or secondary amine groups, including dopaminergic and serotonergic neurotransmitters and their associated metabolites. These matrices improved the matrix-assisted laser desorption/ionization (MALDI)-MSI detection limit toward low-abundance neurotransmitters and facilitated the simultaneous imaging of neurotransmitters in fine structures of the brain at a lateral resolution of 10 mu m. We demonstrate strategies for the identification of unknown molecular species using the innate chemoselectivity of the reactive matrices and the unique isotopic pattern of a brominated reactive matrix. We illustrate the capabilities of the developed method on Parkinsonian brain samples from human post-mortem tissue and animal models. The direct imaging of neurotransmitter systems provides a method for exploring how various neurological diseases affect specific brain regions through neurotransmitter modulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view