SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bhattacharya D.) ;lar1:(ri)"

Sökning: WFRF:(Bhattacharya D.) > RISE

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bundschuh, J., et al. (författare)
  • Arsenic in Latin America : New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020
  • 2020
  • Ingår i: Critical reviews in environmental science and technology. - : Taylor and Francis Inc.. - 1064-3389 .- 1547-6537. ; , s. 1-119
  • Forskningsöversikt (refereegranskat)abstract
    • Today (year 2020), the globally recognized problem of arsenic (As) contamination of water resources and other environments at toxic levels has been reported in all of the 20 Latin American countries. The present review indicates that As is prevalent in 200 areas across these countries. Arsenic is naturally released into the environment and mobilized from geogenic sources comprising: (i) volcanic rocks and emissions, the latter being transported over thousands of kilometers from the source, (ii) metallic mineral deposits, which get exposed to human beings and livestock through drinking water or food chain, and (iii) As-rich geothermal fluids ascending from deep geothermal reservoirs contaminate freshwater sources. The challenge for mitigation is increased manifold by mining and related activities, as As from mining sites is transported by rivers over long distances and even reaches and contaminates coastal environments. The recognition of the As problem by the authorities in several countries has led to various actions for remediation, but there is a lack of long-term strategies for such interventions. Often only total As concentration is reported, while data on As sources, mobilization, speciation, mobility and pathways are lacking which is imperative for assessing quality of any water source, i.e. public and private.
  •  
2.
  • Bhattacharya, Kunal, et al. (författare)
  • Nitric Oxide Dependent Degradation of Polyethylene Glycol-Modified Single-Walled Carbon Nanotubes : Implications for Intra-Articular Delivery
  • 2018
  • Ingår i: Advanced Healthcare Materials. - : Wiley. - 2192-2640 .- 2192-2659. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyethylene glycol (PEG)-modified carbon nanotubes have been successfully employed for intra-articular delivery in mice without systemic or local toxicity. However, the fate of the delivery system itself remains to be understood. In this study 2 kDa PEG-modified single-walled carbon nanotubes (PNTs) are synthesized, and trafficking and degradation following intra-articular injection into the knee-joint of healthy mice are studied. Using confocal Raman microspectroscopy, PNTs can be imaged in the knee-joint and are found to either egress from the synovial cavity or undergo biodegradation over a period of 3 weeks. Raman analysis discloses that PNTs are oxidatively degraded mainly in the chondrocyte-rich cartilage and meniscus regions while PNTs can also be detected in the synovial membrane regions, where macrophages can be found. Furthermore, using murine chondrocyte (ATDC-5) and macrophage (RAW264.7) cell lines, biodegradation of PNTs in activated, nitric oxide (NO)-producing chondrocytes, which is blocked upon pharmacological inhibition of inducible nitric oxide synthase (iNOS), can be shown. Biodegradation of PNTs in macrophages is also noted, but after a longer period of incubation. Finally, cell-free degradation of PNTs upon incubation with the peroxynitrite-generating compound, SIN-1 is demonstrated. The present study paves the way for the use of PNTs as delivery systems in the treatment of diseases of the joint.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy