SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Billker Oliver) "

Sökning: WFRF:(Billker Oliver)

  • Resultat 1-10 av 86
  • [1]234567...9Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lönnberg, Tapio, et al. (författare)
  • Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria
  • 2017
  • Ingår i: Science immunology. - : American Association for the Advancement of Science (AAAS). - 2470-9468. ; 2:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Differentiation of naïve CD4(+) T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates.
  •  
2.
  • Adderley, Jack D., et al. (författare)
  • Analysis of erythrocyte signalling pathways during Plasmodium falciparum infection identifies targets for host-directed antimalarial intervention
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723 .- 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracellular pathogens mobilize host signaling pathways of their host cell to promote their own survival. Evidence is emerging that signal transduction elements are activated in a-nucleated erythrocytes in response to infection with malaria parasites, but the extent of this phenomenon remains unknown. Here, we fill this knowledge gap through a comprehensive and dynamic assessment of host erythrocyte signaling during infection with Plasmodium falciparum. We used arrays of 878 antibodies directed against human signaling proteins to interrogate the activation status of host erythrocyte phospho-signaling pathways at three blood stages of parasite asexual development. This analysis reveals a dynamic modulation of many host signalling proteins across parasite development. Here we focus on the hepatocyte growth factor receptor (c-MET) and the MAP kinase pathway component B-Raf, providing a proof of concept that human signaling kinases identified as activated by malaria infection represent attractive targets for antimalarial intervention.
  •  
3.
  • Akkaya, Munir, et al. (författare)
  • A single-nucleotide polymorphism in a Plasmodium berghei ApiAP2 transcription factor alters the development of host immunity
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 6:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The acquisition of malaria immunity is both remarkably slow and unpredictable. At present, we know little about the malaria parasite genes that influence the host's ability to mount a protective immune response. Here, we show that a single-nucleotide polymorphism (SNP) resulting in a single amino acid change (S to F) in an ApiAP2 transcription factor in the rodent malaria parasite Plasmodium berghei (Pb) NK65 allowed infected mice to mount a T helper cell 1 (T(H)1)-type immune response that controlled subsequent infections. As compared to PbNK65(S), PbNK65(F) parasites differentially expressed 46 genes, most of which are predicted to play roles in immune evasion. PbNK65(F) infections resulted in an early interferon-gamma response and a later expansion of germinal centers, resulting in high levels of infected red blood cell-specific T(H)1-type immunoglobulin G2b (IgG2b) and IgG2c antibodies. Thus, the Pb ApiAP2 transcription factor functions as a critical parasite virulence factor in malaria infections.
  •  
4.
  • Akkaya, Munir, et al. (författare)
  • Testing the impact of a single nucleotide polymorphism in a Plasmodium berghei ApiAP2 transcription factor on experimental cerebral malaria in mice
  • 2020
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322 .- 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral malaria (CM) is the deadliest form of severe Plasmodium infections. Currently, we have limited understanding of the mechanisms by which Plasmodium parasites induce CM. The mouse model of CM, experimental CM (ECM), induced by infection with the rodent parasite, Plasmodium berghei ANKA (PbANKA) has been extensively used to study the pathophysiology of CM. Recent genomic analyses revealed that the coding regions of PbANKA and the closely related Plasmodium berghei NK65 (PbNK65), that does not cause ECM, differ in only 21 single nucleotide polymorphysims (SNPs). Thus, the SNP-containing genes might contribute to the pathogenesis of ECM. Although the majority of these SNPs are located in genes of unknown function, one SNP is located in the DNA binding site of a member of the Plasmodium ApiAP2 transcription factor family, that we recently showed functions as a virulence factor alternating the host's immune response to the parasite. Here, we investigated the impact of this SNP on the development of ECM. Our results using CRISPR-Cas9 engineered parasites indicate that despite its immune modulatory function, the SNP is neither necessary nor sufficient to induce ECM and thus cannot account for parasite strain-specific differences in ECM phenotypes.
  •  
5.
  • Alavi, Y., et al. (författare)
  • The dynamics of interactions between Plasmodium and the mosquito : a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti
  • 2003
  • Ingår i: International Journal of Parasitology. - : Elsevier. - 0020-7519 .- 1879-0135. ; 33:9, s. 933-943
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of parasite–mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500–100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite–mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.
  •  
6.
  • Alkaitis, Matthew S., et al. (författare)
  • Decreased Rate of Plasma Arginine Appearance in Murine Malaria May Explain Hypoargininemia in Children With Cerebral Malaria
  • 2016
  • Ingår i: Journal of Infectious Diseases. - : Oxford University Press. - 0022-1899 .- 1537-6613. ; 214:12, s. 1840-1849
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:  Plasmodium infection depletes arginine, the substrate for nitric oxide synthesis, and impairs endothelium-dependent vasodilation. Increased conversion of arginine to ornithine by parasites or host arginase is a proposed mechanism of arginine depletion.METHODS:  We used high-performance liquid chromatography to measure plasma arginine, ornithine, and citrulline levels in Malawian children with cerebral malaria and in mice infected with Plasmodium berghei ANKA with or without the arginase gene. Heavy isotope-labeled tracers measured by quadrupole time-of-flight liquid chromatography-mass spectrometry were used to quantify the in vivo rate of appearance and interconversion of plasma arginine, ornithine, and citrulline in infected mice.RESULTS:  Children with cerebral malaria and P. berghei-infected mice demonstrated depletion of plasma arginine, ornithine, and citrulline. Knock out of Plasmodium arginase did not alter arginine depletion in infected mice. Metabolic tracer analysis demonstrated that plasma arginase flux was unchanged by P. berghei infection. Instead, infected mice exhibited decreased rates of plasma arginine, ornithine, and citrulline appearance and decreased conversion of plasma citrulline to arginine. Notably, plasma arginine use by nitric oxide synthase was decreased in infected mice.CONCLUSIONS:  Simultaneous arginine and ornithine depletion in malaria parasite-infected children cannot be fully explained by plasma arginase activity. Our mouse model studies suggest that plasma arginine depletion is driven primarily by a decreased rate of appearance.
  •  
7.
  • Arai, M, et al. (författare)
  • Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito
  • 2001
  • Ingår i: Molecular and biochemical parasitology (Print). - : Elsevier. - 0166-6851 .- 1872-9428. ; 116:1, s. 17-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Gametogenesis of Plasmodium in vitro can be induced by the combined stimulus of a 5 degrees C fall in temperature and the presence of xanthurenic acid (XA). In-vitro experiments showed that P. gallinaceum (EC(50)=80 nM) is much more sensitive to XA than P. berghei (9 microM), P. yoelii (8 microM), and P. falciparum (2 microM). However, in the mosquito vector, we do not know whether the temperature shift and XA are the only gametocyte-activating factors (GAF), nor do we know with certainty the true source(s) of XA in the mosquito blood meal. Previous studies indicate that XA is the only source of GAF in the mosquito. By defining, and then contrasting, the ability of an XA-deficient mutant of Aedes aegypti, with the wild-type mosquito to support exflagellation and ookinete formation in vivo, we determined the roles of parasite-, mosquito- and host blood-derived GAF in the regulation of gametogenesis of P. gallinaceum. Removal of both host and vector sources of GAF totally inhibited both exflagellation and ookinete production, whilst the lack of either single source resulted in only a partial reduction of exflagellation and ookinete formation in the mosquito gut. Both sources can be effectively replaced/substituted by synthetic XA. This suggests (1) both mosquito- and vertebrate-derived factors act as GAF in the mosquito gut in vivo; (2) the parasite itself is unable to produce any significant GAF activity. Studies are underway to determine whether vertebrate-derived GAF is XA. These data may form the basis of further studies of the development of new methods of interrupting malarial transmission.
  •  
8.
  • Arai, Meiji, et al. (författare)
  • Isonicotinic acid hydrazide : an anti-tuberculosis drug inhibits malarial transmission in the mosquito gut
  • 2004
  • Ingår i: Experimental parasitology. - 0014-4894 .- 1090-2449. ; 106:1-2, s. 30-36
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the transmission-blocking effect of isonicotinic acid hydrazide (INH), a widely used anti-tuberculosis drug, against Plasmodium gallinaceum and Plasmodium berghei. INH-treatment of infected animals did not inhibit parasite development in the blood of the vertebrate host, but did inhibit exflagellation, ookinete formation, and oocyst development in the mosquito. Oocyst development was inhibited in a dose-dependent manner. The ED(50) in the P. gallinaceum/chicken/Aedes aegypti model and P. berghei/mouse/Anopheles stephensi model was 72 and 109 mg/kg, respectively. In marked contrast, in vitro exflagellation and ookinete development were not directly affected by physiological concentrations of INH. We suggest that INH exerts its inhibitory effects on the mosquito stages of the malaria parasite by an indirect, and at present undefined mechanism. Further elucidation of the mechanism how INH inhibits parasite development specifically on mosquito stages may allow us to identify new targets for malaria control strategy.
  •  
9.
  • Bauza, Karolis, et al. (författare)
  • Efficacy of a Plasmodium vivax Malaria Vaccine Using ChAd63 and Modified Vaccinia Ankara Expressing Thrombospondin-Related Anonymous Protein as Assessed with Transgenic Plasmodium berghei Parasites
  • 2014
  • Ingår i: Infection and Immunity. - : American Society for Microbiology. - 0019-9567 .- 1098-5522. ; 82:3, s. 1277-1286
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmodium vivax is the world's most widely distributed malaria parasite and a potential cause of morbidity and mortality for approximately 2.85 billion people living mainly in Southeast Asia and Latin America. Despite this dramatic burden, very few vaccines have been assessed in humans. The clinically relevant vectors modified vaccinia virus Ankara (MVA) and the chimpanzee adenovirus ChAd63 are promising delivery systems for malaria vaccines due to their safety profiles and proven ability to induce protective immune responses against Plasmodium falciparum thrombospondin-related anonymous protein (TRAP) in clinical trials. Here, we describe the development of new recombinant ChAd63 and MVA vectors expressing P. vivax TRAP (PvTRAP) and show their ability to induce high antibody titers and T cell responses in mice. In addition, we report a novel way of assessing the efficacy of new candidate vaccines against P. vivax using a fully infectious transgenic Plasmodium berghei parasite expressing P. vivax TRAP to allow studies of vaccine efficacy and protective mechanisms in rodents. Using this model, we found that both CD8+ T cells and antibodies mediated protection against malaria using virus-vectored vaccines. Our data indicate that ChAd63 and MVA expressing PvTRAP are good preerythrocytic-stage vaccine candidates with potential for future clinical application.
  •  
10.
  • Berger, Cedric N, et al. (författare)
  • Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC)
  • 2004
  • Ingår i: Molecular Microbiology. - 0950-382X .- 1365-2958. ; 52:4, s. 963-983
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the molecular bases underlying the virulence of diffusely adhering Escherichia coli (DAEC) harbouring the Afa/Dr family of adhesins. These adhesins recognize as receptors the GPI-anchored proteins CD55 (decay-accelerating factor, DAF) and CD66e (carcinoembryonic antigen, CEA). CD66e is a member of the CEA-related cell adhesion molecules (CEACAM) family, comprising seven members. We analysed the interactions of Afa/Dr DAEC with the CEACAMs using CEACAM-expressing CHO and HeLa cells. The results demonstrate that only E. coli expressing a subfamily of Afa/Dr adhesins, named here Afa/Dr-I, including Dr, F1845 and AfaE-III adhesins, bound onto CHO cells expressing CEACAM1, CEA or CEACAM6. Whereas all the Afa/Dr adhesins elicit recruitment of CD55 around adhering bacteria, only the Afa/Dr-I subfamily elicits the recruitment of CEACAM1, CEA and CEACAM6. In addition, although CEACAM3 is not recognized as a receptor by the subfamily of Afa/Dr adhesins, it is recruited around bacteria in HeLa cells. The recruited CEACAM1, CEA and CEACAM6 around adhering bacteria resist totally or in part a detergent extraction, whereas the recruited CEACAM3 does not. Finally, the results show that recognition of CEA and CEACAM6, but not CEACAM1, is accompanied by tight attachment to bacteria of cell surface microvilli-like extensions, which are elongated. Moreover, recognition of CEA is accompanied by an activation of the Rho GTPase Cdc42 and by a phosphorylation of ERM, which in turn elicit the observed cell surface microvilli-like extensions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 86
  • [1]234567...9Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy