SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Billker Oliver) ;pers:(Brochet Mathieu)"

Sökning: WFRF:(Billker Oliver) > Brochet Mathieu

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brochet, Mathieu, et al. (författare)
  • Calcium signalling in malaria parasites
  • 2016
  • Ingår i: Molecular Microbiology. - : John Wiley & Sons. - 0950-382X .- 1365-2958. ; 100:3, s. 397-408
  • Tidskriftsartikel (refereegranskat)abstract
    • Ca2+ is a ubiquitous intracellular messenger in malaria parasites with important functions in asexual blood stages responsible for malaria symptoms, the preceding liver‐stage infection and transmission through the mosquito. Intracellular messengers amplify signals by binding to effector molecules that trigger physiological changes. The characterisation of some Ca2+ effector proteins has begun to provide insights into the vast range of biological processes controlled by Ca2+ signalling in malaria parasites, including host cell egress and invasion, protein secretion, motility and cell cycle regulation. Despite the importance of Ca2+ signalling during the life cycle of malaria parasites, little is known about Ca2+ homeostasis. Recent findings highlighted that upstream of stage‐specific Ca2+ effectors is a conserved interplay between second messengers to control critical intracellular Ca2+ signals throughout the life cycle. The identification of the molecular mechanisms integrating stage‐transcending mechanisms of Ca2+ homeostasis in a network of stage‐specific regulator and effector pathways now represents a major challenge for a meaningful understanding of Ca2+ signalling in malaria parasites.
  •  
2.
  • Brochet, Mathieu, et al. (författare)
  • Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca²⁺ signals at key decision points in the life cycle of malaria parasites
  • 2014
  • Ingår i: PLoS biology. - : Public Library of Science. - 1544-9173 .- 1545-7885. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Many critical events in the Plasmodium life cycle rely on the controlled release of Ca²⁺ from intracellular stores to activate stage-specific Ca²⁺-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP)-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca²⁺ required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca²⁺ signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5)-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca²⁺ effectors, PKG emerges as a unifying factor to control multiple cellular Ca²⁺ signals essential for malaria parasite development and transmission.
  •  
3.
  • Fang, Hanwei, et al. (författare)
  • Epistasis studies reveal redundancy among calcium-dependent protein kinases in motility and invasion of malaria parasites
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • In malaria parasites, evolution of parasitism has been linked to functional optimisation. Despite this optimisation, most members of a calcium-dependent protein kinase (CDPK) family show genetic redundancy during erythrocytic proliferation. To identify relationships between phospho-signalling pathways, we here screen 294 genetic interactions among protein kinases in Plasmodium berghei. This reveals a synthetic negative interaction between a hypomorphic allele of the protein kinase G (PKG) and CDPK4 to control erythrocyte invasion which is conserved in P. falciparum. CDPK4 becomes critical when PKG-dependent calcium signals are attenuated to phosphorylate proteins important for the stability of the inner membrane complex, which serves as an anchor for the acto-myosin motor required for motility and invasion. Finally, we show that multiple kinases functionally complement CDPK4 during erythrocytic proliferation and transmission to the mosquito. This study reveals how CDPKs are wired within a stage-transcending signalling network to control motility and host cell invasion in malaria parasites.
  •  
4.
  • Invergo, Brandon M., et al. (författare)
  • Sub-minute Phosphoregulation of Cell Cycle Systems during Plasmodium Gamete Formation
  • 2017
  • Ingår i: Cell Reports. - : Elsevier. - 2211-1247. ; 21:7, s. 2017-2029
  • Tidskriftsartikel (refereegranskat)abstract
    • The transmission of malaria parasites to mosquitoes relies on the rapid induction of sexual reproduction upon their ingestion into a blood meal. Haploid female and male gametocytes become activated and emerge from their host cells, and the males enter the cell cycle to produce eight microgametes. The synchronized nature of gametogenesis allowed us to investigate phosphorylation signaling during its first minute in Plasmodium berghei via a high-resolution time course of the phosphoproteome. This revealed an unexpectedly broad response, with proteins related to distinct cell cycle events undergoing simultaneous phosphoregulation. We implicate several protein kinases in the process, and we validate our analyses on the plant-like calcium-dependent protein kinase 4 (CDPK4) and a homolog of serine/arginine-rich protein kinases (SRPK1). Mutants in these kinases displayed distinct phosphoproteomic disruptions, consistent with differences in their phenotypes. The results reveal the central role of protein phosphorylation in the atypical cell cycle regulation of a divergent eukaryote.
  •  
5.
  • Ning, Jue, et al. (författare)
  • Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates
  • 2013
  • Ingår i: Genes & Development. - : Cold Spring Harbor Laboratory Press (CSHL). - 0890-9369 .- 1549-5477. ; 27:10, s. 1198-1215
  • Tidskriftsartikel (refereegranskat)abstract
    • Fertilization is a crucial yet poorly characterized event in eukaryotes. Our previous discovery that the broadly conserved protein HAP2 (GCS1) functioned in gamete membrane fusion in the unicellular green alga Chlamydomonas and the malaria pathogen Plasmodium led us to exploit the rare biological phenomenon of isogamy in Chlamydomonas in a comparative transcriptomics strategy to uncover additional conserved sexual reproduction genes. All previously identified Chlamydomonas fertilization-essential genes fell into related clusters based on their expression patterns. Out of several conserved genes in a minus gamete cluster, we focused on Cre06.g280600, an ortholog of the fertilization-related Arabidopsis GEX1. Gene disruption, cell biological, and immunolocalization studies show that CrGEX1 functions in nuclear fusion in Chlamydomonas. Moreover, CrGEX1 and its Plasmodium ortholog, PBANKA_113980, are essential for production of viable meiotic progeny in both organisms and thus for mosquito transmission of malaria. Remarkably, we discovered that the genes are members of a large, previously unrecognized family whose first-characterized member, KAR5, is essential for nuclear fusion during yeast sexual reproduction. Our comparative transcriptomics approach provides a new resource for studying sexual development and demonstrates that exploiting the data can lead to the discovery of novel biology that is conserved across distant taxa.
  •  
6.
  • Pfander, Claudia, et al. (författare)
  • A scalable pipeline for highly effective genetic modification of a malaria parasite
  • 2011
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 8:12, s. 1078-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • In malaria parasites, the systematic experimental validation of drug and vaccine targets by reverse genetics is constrained by the inefficiency of homologous recombination and by the difficulty of manipulating adenine and thymine (A+T)-rich DNA of most Plasmodium species in Escherichia coli. We overcame these roadblocks by creating a high-integrity library of Plasmodium berghei genomic DNA (>77% A+T content) in a bacteriophage N15-based vector that can be modified efficiently using the lambda Red method of recombineering. We built a pipeline for generating P. berghei genetic modification vectors at genome scale in serial liquid cultures on 96-well plates. Vectors have long homology arms, which increase recombination frequency up to tenfold over conventional designs. The feasibility of efficient genetic modification at scale will stimulate collaborative, genome-wide knockout and tagging programs for P. berghei.
  •  
7.
  • Pfander, Claudia, et al. (författare)
  • Recombination-mediated genetic engineering of Plasmodium berghei DNA
  • 2013
  • Ingår i: Malaria. - Totowa, NJ : Humana Press. - 9781627030250 - 9781627030267 ; , s. 127-138
  • Bokkapitel (refereegranskat)abstract
    • DNA of Plasmodium berghei is difficult to manipulate in Escherichia coli by conventional restriction and ligation methods due to its high content of adenine and thymine (AT) nucleotides. This limits our ability to clone large genes and to generate complex vectors for modifying the parasite genome. We here describe a protocol for using lambda Red recombinase to modify inserts of a P. berghei genomic DNA library constructed in a linear, low-copy, phage-derived vector. The method uses primer extensions of 50 bp, which provide sufficient homology for an antibiotic resistance marker to recombine efficiently with a P. berghei genomic DNA insert in E. coli. In a subsequent in vitro Gateway reaction the bacterial marker is replaced with a cassette for selection in P. berghei. The insert is then released and used for transfection. The basic techniques we describe here can be adapted to generate highly efficient vectors for gene deletion, tagging, targeted mutagenesis, or genetic complementation with larger genomic regions.
  •  
8.
  • Pino, Paco, et al. (författare)
  • A tetracycline-repressible transactivator system to study essential genes in malaria parasites
  • 2012
  • Ingår i: Cell Host and Microbe. - : Elsevier. - 1931-3128 .- 1934-6069. ; 12:6, s. 824-834
  • Tidskriftsartikel (refereegranskat)abstract
    • A major obstacle in analyzing gene function in apicomplexan parasites is the absence of a practical regulatable expression system. Here, we identified functional transcriptional activation domains within Apicomplexan AP2 (ApiAP2) family transcription factors. These ApiAP2 transactivation domains were validated in blood-, liver-, and mosquito-stage parasites and used to create a robust conditional expression system for stage-specific, tetracycline-dependent gene regulation in Toxoplasma gondii, Plasmodium berghei, and Plasmodium falciparum. To demonstrate the utility of this system, we created conditional knockdowns of two essential P. berghei genes: profilin (PRF), a protein implicated in parasite invasion, and N-myristoyltransferase (NMT), which catalyzes protein acylation. Tetracycline-induced repression of PRF and NMT expression resulted in a dramatic reduction in parasite viability. This efficient regulatable system will allow for the functional characterization of essential proteins that are found in these important parasites.
  •  
9.
  • Sebastian, Sarah, et al. (författare)
  • A Plasmodium calcium-dependent protein kinase controls zygote development and transmission by translationally activating repressed mRNAs
  • 2012
  • Ingår i: Cell Host and Microbe. - : Elsevier. - 1931-3128 .- 1934-6069. ; 12:1, s. 9-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium-dependent protein kinases (CDPKs) play key regulatory roles in the life cycle of the malaria parasite, but in many cases their precise molecular functions are unknown. Using the rodent malaria parasite Plasmodium berghei, we show that CDPK1, which is known to be essential in the asexual blood stage of the parasite, is expressed in all life stages and is indispensable during the sexual mosquito life-cycle stages. Knockdown of CDPK1 in sexual stages resulted in developmentally arrested parasites and prevented mosquito transmission, and these effects were independent of the previously proposed function for CDPK1 in regulating parasite motility. In-depth translational and transcriptional profiling of arrested parasites revealed that CDPK1 translationally activates mRNA species in the developing zygote that in macrogametes remain repressed via their 3' and 5'UTRs. These findings indicate that CDPK1 is a multifunctional protein that translationally regulates mRNAs to ensure timely and stage-specific protein expression.
  •  
10.
  • Volkmann, Katrin, et al. (författare)
  • The Alveolin IMC1h Is Required for Normal Ookinete and Sporozoite Motility Behaviour and Host Colonisation in Plasmodium berghei
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 7:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Alveolins, or inner membrane complex (IMC) proteins, are components of the subpellicular network that forms a structural part of the pellicle of malaria parasites. In Plasmodium berghei, deletions of three alveolins, IMC1a, b, and h, each resulted in reduced mechanical strength and gliding velocity of ookinetes or sporozoites. Using time lapse imaging, we show here that deletion of IMC1h (PBANKA_143660) also has an impact on the directionality and motility behaviour of both ookinetes and sporozoites. Despite their marked motility defects, sporozoites lacking IMC1h were able to invade mosquito salivary glands, allowing us to investigate the role of IMC1h in colonisation of the mammalian host. We show that IMC1h is essential for sporozoites to progress through the dermis in vivo but does not play a significant role in hepatoma cell transmigration and invasion in vitro. Colocalisation of IMC1h with the residual IMC in liver stages was detected up to 30 hours after infection and parasites lacking IMC1h showed developmental defects in vitro and a delayed onset of blood stage infection in vivo. Together, these results suggest that IMC1h is involved in maintaining the cellular architecture which supports normal motility behaviour, access of the sporozoites to the blood stream, and further colonisation of the mammalian host.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy