SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Birve Anna) "

Sökning: WFRF:(Birve Anna)

  • Resultat 1-10 av 38
  • [1]234Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Sa, 1967-, et al. (författare)
  • In vivo analysis of Suppressor of zeste 12´s different isoforms
  • Annan publikation (övrigt vetenskapligt)abstract
    • Polycomb Group (PcG) genes are known to encode a large chromatin-associated family of proteins which are involved in genomic regulation of many cellular processes. Su(z)12 is a key component in PcG silencing. It is needed for three levels of methylation of histone 3 lysine 27 in vivo in Drosophila. Here, we report that Su(z)12 may exist in different isoforms and that these isoforms are spatially and temporally regulated. The biological function of the Su(z)12-A and -B isoforms seems to be very different. For instance the transgenic Su(z)12-B and the human homolog SUZ12, but not Su(z)12-A, rescue Su(z)12 mutants. Furthermore, transgenic flies over-expressing Su(z)12-B show typical homeotic transformation phenotypes, while over-expression of Su(z)12-A does not. However, the two isoforms appears to be able to substitute for each other in some aspects. During larval and pupal stages, Su(z)12-A seems to play the main role. 
  •  
2.
  • Hugosson, F., et al. (författare)
  • The Drosophila Midkine/Pleiotrophin Homologues Miple1 and Miple2 Affect Adult Lifespan but Are Dispensable for Alk Signaling during Embryonic Gut Formation
  • 2014
  • Ingår i: Plos One. - 1932-6203. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Midkine (MDK) and Pleiotrophin (PTN) are small heparin-binding cytokines with closely related structures. The Drosophila genome harbours two genes encoding members of the MDK/PTN family of proteins, known as miple1 and miple2. We have investigated the role of Miple proteins in vivo, in particular with regard to their proposed role as ligands for the Alk receptor tyrosine kinase (RTK). Here we show that Miple proteins are neither required to drive Alk signaling during Drosophila embryogenesis, nor are they essential for development in the fruit fly. Additionally we show that neither MDK nor PTN can activate hALK in vivo when ectopically co-expressed in the fly. In conclusion, our data suggest that Alk is not activated by MDK/PTN related growth factors Miple1 and Miple 2 in vivo.
  •  
3.
  • Ingre, Caroline, et al. (författare)
  • A 50bp deletion in the SOD1 promoter lowers enzyme expression but is not associated with ALS in Sweden
  • 2016
  • Ingår i: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - 2167-8421 .- 2167-9223. ; 17:5-6, s. 452-457
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). A 50 base pair (bp) deletion of SOD1 has been suggested to reduce transcription and to be associated with later disease onset in ALS. This study was aimed to reveal if the 50bp deletion influenced SOD1 enzymatic activity, occurrence and phenotype of the disease in a Swedish ALS/control cohort. Blood samples from 512 Swedish ALS patients and 354 Swedish controls without coding SOD1 mutations were analysed for the 50bp deletion allele. The enzymatic activity of SOD1 in erythrocytes was analysed and genotype-phenotype correlations were assessed. Results demonstrated that the genotype frequencies of the 50bp deletion were all found to be in Hardy-Weinberg equilibrium. No significant differences were found for age of onset, disease duration or site of onset. SOD1 enzymatic activity showed a statistically significant decreasing trend in the control group, in which the allele was associated with a 5% reduction in SOD1 activity. The results suggest that the 50bp deletion has a moderate reducing effect on SOD1 synthesis. No modulating effects, however, were found on ALS onset, phenotype and survival in the Swedish population.
  •  
4.
  • Ingre, Caroline, 1977-, et al. (författare)
  • A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts
  • 2013
  • Ingår i: Neurobiology of Aging. - New York : Elsevier. - 0197-4580 .- 1558-1497. ; 34:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have veryrecently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, weperformed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporaldementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenicrelevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United Stateswere screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. Ina German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which wasabsent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recentlydescribed p.Gln117Gly sequence variant was found in another familial ALS patient from the United States.The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overtcognitive involvement. PFN1 mutations were absent in patients with motor neuron disease anddementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can causeALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the“classic” ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proofof-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motorneuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization byphosphorylation of profilin 1 might be necessary for motor neuron survival.
  •  
5.
  •  
6.
  • Ingre, Caroline, 1977-, et al. (författare)
  • No association between VAPB mutations and familial or sporadic ALS in Sweden, Portugal and Iceland
  • 2013
  • Ingår i: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - : Informa Healthcare. - 2167-8421 .- 2167-9223. ; 14:7-8, s. 620-627
  • Tidskriftsartikel (övrigt vetenskapligt)abstract
    • Background: Linkage analysis in Brazilian families with amyotrophic lateral sclerosis (ALS) revealed that a missense mutation p.Pro56Ser in a conserved gene VAMP-associated protein type B and C (VAPB) co-segregates with disease.Methods: Blood samples were studied from 973 Swedish, 126 Portuguese and 19 Icelandic ALS patients, and from 644 control subjects. 
Results: We identified five VAPB mutations, two of which are novel, in 14 Swedish ALS patients and in nine control individuals from Sweden and Portugal. The 14 patients with VAPB mutations all carried a diagnosis of sporadic ALS. Mutations were also found in healthy adult relatives. The p.Asp130Glu VAPB mutation was also found in two patients from an Icelandic ALS family, but the mutation did not co-segregate with disease. All patients were instead found to be heterozygous for a p.Gly93Ser SOD1 mutation. There were no clinical differences between them, suggesting that the p.Asp130Glu VAPB mutation is unrelated to the disease process. 
Conclusions: The VAPB mutations were as frequent in control individuals as in patients. This observation, in combination with the finding of several healthy relatives carrying the VAPB mutations and no ancestors with ALS disease, suggests that it is unlikely that these VAPB mutations are pathogenic
  •  
7.
  • Nordin, Angelica, et al. (författare)
  • Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non-neuronal tissues in 18 patients with ALS or FTD
  • 2015
  • Ingår i: Human Molecular Genetics. - 0964-6906 .- 1460-2083. ; 24:11, s. 3133-3142
  • Tidskriftsartikel (refereegranskat)abstract
    • A GGGGCC-repeat expansion in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) among Caucasians. However, little is known about the variability of the GGGGCC expansion in different tissues and whether this correlates with the observed phenotype. Here, we used Southern blotting to estimate the size of hexanucleotide expansions in C9orf72 in neural and non-neural tissues from 18 autopsied ALS and FTD patients with repeat expansion in blood. Digitalization of the Southern blot images allowed comparison of repeat number, smear distribution and expansion band intensity between tissues and between patients. We found marked intra-individual variation of repeat number between tissues, whereas there was less variation within each tissue group. In two patients, the size variation between tissues was extreme, with repeat numbers below 100 in all studied non-neural tissues, whereas expansions in neural tissues were 20-40 times greater and in the same size range observed in neural tissues of the other 16 patients. The expansion pattern in different tissues could not distinguish between diagnostic groups and no correlation was found between expansion size in frontal lobe and occurrence of cognitive impairment. In ALS patients, a less number of repeats in the cerebellum and parietal lobe correlated with earlier age of onset and a larger number of repeats in the parietal lobe correlated with a more rapid progression. In 43 other individuals without repeat expansion in blood, we find that repeat sizes up to 15 are stable, as no size variation between blood, brain and spinal cord was found.
  •  
8.
  • Synofzik, M., et al. (författare)
  • Mutant superoxide dismutase-1 indistinguishable from wild-type causes ALS
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP): Policy B - Oxford Open Option B. - 0964-6906 .- 1460-2083. ; 21:16, s. 3568-3574
  • Tidskriftsartikel (refereegranskat)abstract
    • A reason for screening amyotrophic lateral sclerosis (ALS) patients for mutations in the superoxide dismutase-1 (SOD1) gene is the opportunity to find novel mutations with properties that can give information on pathogenesis. A novel c.352Cgreater thanG (L117V) SOD1 mutation was found in two Syrian ALS families living in Europe. The disease showed unusually low penetrance and slow progression. In erythrocytes, the total SOD1 activity, as well as specific activity of the mutant protein, was equal in carriers of the mutation and family controls lacking SOD1 mutations. The structural stabilities of the L117V mutant and wild-type SOD1 under denaturing conditions were likewise equal, but considerably lower than that of murine SOD1. As analyzed with an ELISA specific for misfolded SOD1 species, no differences were found in the content of misfolded SOD1 protein between extracts of fibroblasts from wild-type controls and from an L117V patient. In contrast, elevated levels of misfolded SOD1 protein were found in fibroblasts from ALS patients carrying seven other mutations in the SOD1 gene. We conclude that mutations in SOD1 that result in a fully stable protein are associated with low disease penetrance for ALS and may be found in cases of apparently sporadic ALS. Wild-type human SOD1 is moderately stable, and was found here to be within the stability range of ALS-causing SOD1 variants, lending support to the hypothesis that wild-type SOD1 could be more generally involved in ALS pathogenesis.
  •  
9.
  • van Es, Michael A, et al. (författare)
  • Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis
  • 2011
  • Ingår i: Annals of Neurology. - : Wiley-Blackwell. - 0364-5134 .- 1531-8249. ; 70:6, s. 964-973
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Several studies have suggested an increased frequency of variants in the gene encoding angiogenin (ANG) in patients with amyotrophic lateral sclerosis (ALS). Interestingly, a few ALS patients carrying ANG variants also showed signs of Parkinson disease (PD). Furthermore, relatives of ALS patients have an increased risk to develop PD, and the prevalence of concomitant motor neuron disease in PD is higher than expected based on chance occurrence. We therefore investigated whether ANG variants could predispose to both ALS and PD.METHODS: We reviewed all previous studies on ANG in ALS and performed sequence experiments on additional samples, which allowed us to analyze data from 6,471 ALS patients and 7,668 controls from 15 centers (13 from Europe and 2 from the USA). We sequenced DNA samples from 3,146 PD patients from 6 centers (5 from Europe and 1 from the USA). Statistical analysis was performed using the variable threshold test, and the Mantel-Haenszel procedure was used to estimate odds ratios.RESULTS: Analysis of sequence data from 17,258 individuals demonstrated a significantly higher frequency of ANG variants in both ALS and PD patients compared to control subjects (p = 9.3 × 10(-6) for ALS and p = 4.3 × 10(-5) for PD). The odds ratio for any ANG variant in patients versus controls was 9.2 for ALS and 6.7 for PD.INTERPRETATION: The data from this multicenter study demonstrate that there is a strong association between PD, ALS, and ANG variants. ANG is a genetic link between ALS and PD.
  •  
10.
  • van Es, Michael A, et al. (författare)
  • Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis
  • 2009
  • Ingår i: Nature genetics. - 1546-1718. ; 41:10, s. 1083-1087
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a genome-wide association study among 2,323 individuals with sporadic amyotrophic lateral sclerosis (ALS) and 9,013 control subjects and evaluated all SNPs with P < 1.0 x 10(-4) in a second, independent cohort of 2,532 affected individuals and 5,940 controls. Analysis of the genome-wide data revealed genome-wide significance for one SNP, rs12608932, with P = 1.30 x 10(-9). This SNP showed robust replication in the second cohort (P = 1.86 x 10(-6)), and a combined analysis over the two stages yielded P = 2.53 x 10(-14). The rs12608932 SNP is located at 19p13.3 and maps to a haplotype block within the boundaries of UNC13A, which regulates the release of neurotransmitters such as glutamate at neuromuscular synapses. Follow-up of additional SNPs showed genome-wide significance for two further SNPs (rs2814707, with P = 7.45 x 10(-9), and rs3849942, with P = 1.01 x 10(-8)) in the combined analysis of both stages. These SNPs are located at chromosome 9p21.2, in a linkage region for familial ALS with frontotemporal dementia found previously in several large pedigrees.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38
  • [1]234Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy