Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blackbourn J) "

Sökning: WFRF:(Blackbourn J)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
  • Mark, Linda, et al. (författare)
  • KSHV complement control protein mimics human molecular mechanisms for inhibition of the complement system.
  • 2004
  • Ingår i: Journal of Biological Chemistry. - : ASBMB. - 1083-351X. ; 279:43, s. 45093-45101
  • Tidskriftsartikel (refereegranskat)abstract
    • Kaposi's sarcoma-associated human herpesvirus (KSHV) is thought to cause Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Previously, we reported that the KSHV complement control protein (KCP) encoded within the viral genome is a potent regulator of the complement system; it acts both as a cofactor for factor I and accelerates decay of the C3 convertases (Spiller, O.B., Blackbourn, D.J., Mark, L., Proctor, D. G., and Blom, A. M. (2003) J. Biol. Chem. 278, 9283-9289). KCP is a homologue to human complement regulators, being comprised of four complement control protein (CCP) domains. In this, the first study to identify the functional sites of a viral homologue at the amino acid level, we created a three-dimensional homology-based model followed by site-directed mutagenesis to locate complement regulatory sites. Classical pathway regulation, both through decay acceleration and factor I cleavage of C4b, required a cluster of positively charged amino acids in CCP1 stretching into CCP2 (Arg-20, Arg-33, Arg-35, Lys-64, Lys-65, and Lys-88) as well as positively (Lys-131, Lys-133, and His-135) and negatively (Glu-99, Glu-152, and Asp-155) charged areas at opposing faces of the border region between CCPs 2 and 3. The regulation of the alternative pathway (via factor I-mediated C3b cleavage) was found to both overlap with classical pathway regulatory sites (Lys-64, Lys-65, Lys-88 and Lys-131, Lys-133, His-135) as well as require unique, more C-terminal residues in CCPs 3 and 4 (His-158, His-171, and His-213) and CCP 4 (Phe-195, Phe-207, and Leu-209). We show here that KCP has evolved to maintain the spatial structure of its functional sites, especially the positively charged patches, compared with host complement regulators.
  • Mark, Linda, et al. (författare)
  • Molecular characterization of the rhesus rhadinovirus (RRV) ORF4 gene and the RRV complement control protein it encodes
  • 2007
  • Ingår i: Journal of Virology. - : American Society for Microbiology. - 1098-5514. ; 81:8, s. 4166-4176
  • Tidskriftsartikel (refereegranskat)abstract
    • The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model.
  • Mark, Linda, et al. (författare)
  • Separation of decay-accelerating and cofactor functional activities of Kaposi's sarcoma-associated herpesvirus complement control protein using monoclonal antibodies
  • 2008
  • Ingår i: Immunology. - : Wiley-Blackwell. - 0019-2805. ; 123:2, s. 228-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Complement is an essential part of the innate immune system, which clears pathogens without requirement for previous exposure, although it also greatly enhances the efficacy and response of the cellular and humoral immune systems. Kaposi's sarcoma-associated herpesvirus (KSHV) is the most recently identified human herpesvirus and the likely aetiological agent of Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. We previously reported that the KSHV complement control protein (KCP) was expressed on infected cells and virions, and could inhibit complement through decay-accelerating activity (DAA) of the classical C3 convertase and cofactor activity (CFA) for factor I (FI)-mediated degradation of C4b and C3b, as well as acting as an attachment factor for binding to heparan sulphate on permissive cells. Here, we determined the ability of a panel of monoclonal anti-KCP antibodies to block KCP functions relative to their recognized epitopes, as determined through binding to recombinant KCP containing large (entire domain) or small (2-3 amino acid residue) alterations. One antibody recognizing complement control protein (CCP) domain 1 blocked heparin binding, DAA and C4b CFA, but was poor at blocking C3b CFA, while a second antibody recognizing CCP4 blocked C3b CFA and 80% DAA, but not C4b CFA or heparan sulphate binding. Two antibodies recognizing CCP2 and CCP3 were capable of blocking C3b and C4b CFA and heparan sulphate binding, but only one could inhibit DAA. These results show that, while KCP is a multifunctional protein, these activities do not completely overlap and can be isolated through incubation with monoclonal antibodies.
  • Okroj, Marcin, et al. (författare)
  • Characterization of the complement inhibitory function of Rhesus rhadinovirus complement control protein (RCP).
  • 2009
  • Ingår i: Journal of Biological Chemistry. - : ASBMB. - 1083-351X. ; 2008:Nov 6., s. 505-514
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhesus Rhadinovirus (RRV) is currently the closest known, fully sequenced homolog of human Kaposi's sarcoma-associated herpesvirus (KSHV). Both these viruses encode complement inhibitors: KSHV-complement control protein (KCP) and RRV-complement control protein (RCP). Previously we characterized in detail the functional properties of KCP as complement inhibitor. Herein, we performed comparative analyses for two variants of RCP protein, encoded by RRV strains H26-95 and 17577. Both RCP variants and KCP inhibited human and rhesus complement when tested in hemolytic assays measuring all steps of activation via the classical and the alternative pathway. RCP variants from both RRV strains supported C3b- and C4b-degradation by factor I and decay-acceleration of the classical C3 convertase, similar to KCP. Additionally, the 17577 RCP variant accelerated decay of the alternative C3 convertase, which was not seen for KCP. In contrast to KCP, RCP showed no affinity to heparin and is the first described complement inhibitor in which the binding site for C3b/C4b does not interact with heparin. Molecular modeling shows a structural disruption in the region of RCP that corresponds to the KCP-heparin binding site. This makes RRV a superior model for future in vivo investigations of complement evasion, as RCP does not play a supportive role in viral attachment as KCP does.
  • Spiller, O. Brad, et al. (författare)
  • Functional activity of the complement regulator encoded by Kaposi's sarcoma associated herpesvirus.
  • 2003
  • Ingår i: Journal of Biological Chemistry. - : ASBMB. - 1083-351X. ; 278:11, s. 9283-9289
  • Tidskriftsartikel (refereegranskat)abstract
    • Kaposi's sarcoma-associated herpesvirus (KSHV) is closely associated with Kaposi's sarcoma and certain B-cell lymphomas. The fourth open reading frame of the KSHV genome encodes a protein (KSHV complement control protein (KCP, previously termed ORF4)) predicted to have complement-regulating activity. Here, we show that soluble KCP strongly enhanced the decay of classical C3-convertase but not the alternative pathway C3-convertase, when compared with the host complement regulators: factor H, C4b-binding protein, and decay-accelerating factor. The equilibrium affinity constant (KD) of KCP for C3b and C4b was determined by surface plasmon resonance analysis to range between 0.47-10 µM and 0.025-6.1 µM, respectively, depending on NaCl concentration and cation presence. Soluble and cell-associated KCP acted as a cofactor for factor I (FI)-mediated cleavage of both C4b and C3b and induced the cleavage products C4d and iC3b, respectively. In the presence of KCP, FI further cleaved iC3b to C3d, which has never been described before as complement receptor 1 only mediates the production of C3dg by FI. KCP would enhance virus pathogenesis through evading complement attack, opsonization, and anaphylaxis but may also aid in targeting KSHV to one of its host reservoirs since C3d is a ligand for complement receptor 2 on B-cells.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy