1. |
- Aamodt, K., et al.
(författare)
-
The ALICE experiment at the CERN LHC
- 2008
-
Ingår i: Journal of Instrumentation. - 1748-0221. ; 3:S08002
-
Forskningsöversikt (refereegranskat)abstract
- ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
|
|
2. |
-
- 2019
-
Tidskriftsartikel (refereegranskat)
|
|
3. |
- Kim, Jae-Young, et al.
(författare)
-
Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
- 2020
-
Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
-
Tidskriftsartikel (refereegranskat)abstract
- 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
|
|
4. |
- Akiyama, Kazunori, et al.
(författare)
-
First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration
- 2022
-
Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
-
Tidskriftsartikel (refereegranskat)abstract
- We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5-11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of similar to 50 mu as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.
|
|
5. |
- Andreoni, Igor, et al.
(författare)
-
Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory
- 2022
-
Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 260:1
-
Tidskriftsartikel (refereegranskat)abstract
- The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory's Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events.
|
|
6. |
- Bonebrake, Timothy C., et al.
(författare)
-
Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science
- 2018
-
Ingår i: Biological Reviews. - : Wiley-Blackwell Publishing Inc.. - 1464-7931 .- 1469-185X. ; 93:1, s. 284-305
-
Forskningsöversikt (refereegranskat)abstract
- Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions.
|
|
7. |
- Brose, Ulrich, et al.
(författare)
-
Body sizes of consumers and their resources
- 2005
-
Ingår i: Ecology. - : Ecological Society of America. - 0012-9658 .- 1939-9170. ; 86:9, s. 2545-2545
-
Tidskriftsartikel (refereegranskat)abstract
- Trophic information—who eats whom—and species’ body sizes are two of the most basic descriptions necessary to understand community structure as well as ecological and evolutionary dynamics. Consumer–resource body size ratios between predators and their prey, and parasitoids and their hosts, have recently gained increasing attention due to their important implications for species’ interaction strengths and dynamical population stability. This data set documents body sizes of consumers and their resources. We gathered body size data for the food webs of Skipwith Pond, a parasitoid community of grass-feeding chalcid wasps in British grasslands; the pelagic community of the Benguela system, a source web based on broom in the United Kingdom; Broadstone Stream, UK; the Grand Caric¸aie marsh at Lake Neuchaˆtel, Switzerland; Tuesday Lake, USA; alpine lakes in the Sierra Nevada of California; Mill Stream, UK; and the eastern Weddell Sea Shelf, Antarctica. Further consumer–resource body size data are included for planktonic predators, predatory nematodes, parasitoids, marine fish predators, freshwater invertebrates, Australian terrestrial consumers, and aphid parasitoids. Containing 16 807 records, this is the largest data set ever compiled for body sizes of consumers and their resources. In addition to body sizes, the data set includes information on consumer and resource taxonomy, the geographic location of the study, the habitat studied, the type of the feeding interaction (e.g., predacious, parasitic) and the metabolic categories of the species (e.g., invertebrate, ectotherm vertebrate). The present data set was gathered with the intent to stimulate research on effects of consumer–resource body size patterns on food-web structure, interaction-strength distributions, population dynamics, and community stability. The use of a common data set may facilitate cross-study comparisons and understanding of the relationships between different scientific approaches and models.
|
|
8. |
- Jacobson-Galán, Wynn V., et al.
(författare)
-
Late-time Observations of Calcium-rich Transient SN 2019ehk Reveal a Pure Radioactive Decay Power Source
- 2021
-
Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 908:2
-
Tidskriftsartikel (refereegranskat)abstract
- We present multiband Hubble Space Telescope imaging of the calcium-rich supernova (SN) SN 2019ehk at 276-389 days after explosion. These observations represent the latest B-band to near-IR photometric measurements of a calcium-rich transient to date and allow for the first opportunity to analyze the late-time bolometric evolution of an object in this observational SN class. We find that the late-time bolometric light curve of SN 2019ehk can be described predominantly through the radioactive decay of 56Co for which we derive a mass of M(56Co) = (2.8 ± 0.1) × 10-2 M o. Furthermore, the rate of decline in bolometric luminosity requires the leakage of γ-rays on timescale t γ = 53.9 ± 1.30 days, but we find no statistical evidence for incomplete positron trapping in the SN ejecta. While our observations cannot constrain the exact masses of other radioactive isotopes synthesized in SN 2019ehk, we estimate a mass ratio limit of M(57Co)/M(56Co) ≤ 0.030. This limit is consistent with the explosive nucleosynthesis produced in the merger of low-mass white dwarfs, which is one of the favored progenitor scenarios in early-time studies of SN 2019ehk.
|
|
9. |
- Nicholl, Matt, et al.
(författare)
-
An extremely energetic supernova from a very massive star in a dense medium
- 2020
-
Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4, s. 893-899
-
Tidskriftsartikel (refereegranskat)abstract
- The interaction of a supernova with a circumstellar medium (CSM) can dramatically increase the emitted luminosity by converting kinetic energy to thermal energy. In 'superluminous' supernovae of type IIn-named for narrow hydrogen lines(1) in their spectra-the integrated emission can reach(2-6) similar to 10(51) erg, attainable by thermalizing most of the kinetic energy of a conventional supernova. A few transients in the centres of active galaxies have shown similar spectra and even larger energies(7,8), but are difficult to distinguish from accretion onto the supermassive black hole. Here we present a new event, SN2016aps, offset from the centre of a low-mass galaxy, that radiated greater than or similar to 5 x 10(51) erg, necessitating a hyper-energetic supernova explosion. We find a total (supernova ejecta + CSM) mass likely exceeding 50-100 M-circle dot, with energy greater than or similar to 10(52) erg, consistent with some models of pair-instability supernovae or pulsational pair-instability supernovae-theoretically predicted thermonuclear explosions from helium cores >50 M-circle dot. Independent of the explosion mechanism, this event demonstrates the existence of extremely energetic stellar explosions, detectable at very high redshifts, and provides insight into dense CSM formation in the most massive stars.
|
|
10. |
- Oefner, Carolin M., et al.
(författare)
-
Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs
- 2012
-
Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 1097-6825 .- 0091-6749. ; 129:6, s. 1647-1647
-
Tidskriftsartikel (refereegranskat)abstract
- Background: Under inflammatory conditions, T cell-dependent (TD) protein antigens induce proinflammatory T-and B-cell responses. In contrast, tolerance induction by TD antigens without costimulation triggers the development of regulatory T cells. Under both conditions, IgG antibodies are generated, but whether they have different immunoregulatory functions remains elusive. Objective: It was shown recently that proinflammatory or anti-inflammatory effector functions of IgG molecules are determined by different Fc N-linked glycosylation patterns. We sought to examine the Fc glycosylation and anti-inflammatory quality of IgG molecules formed on TD tolerance induction. Methods: We administered chicken ovalbumin (OVA) with or without costimulus to mice and analyzed OVA-reactive IgG Fc glycosylation. The anti-inflammatory function of differentially glycosylated anti-OVA IgGs was further investigated in studies with dendritic cell cultures and in an in vivo model of allergic airway disease. Additionally, we analyzed the Fc glycosylation pattern of birch pollen-reactive serum IgGs after successful allergen-specific immunotherapy in patients. Results: Stimulation with TD antigens under inflammatory conditions induces plasma cells expressing low levels of alpha 2,6-sialyltransferase and producing desialylated IgGs. In contrast, plasma cells induced on tolerance induction did not downregulate alpha 2,6-sialyltransferase expression and secreted immunosuppressive sialylated IgGs that were sufficient to block antigen-specific T- and B-cell responses, dendritic cell maturation, and allergic airway inflammation. Importantly, successful specific immunotherapy in allergic patients also induced sialylated allergen-specific IgGs. Conclusions: Our data show a novel antigen-specific immunoregulatory mechanism mediated by anti-inflammatory sialylated IgGs that are formed on TD tolerance induction. These findings might help to develop novel antigen-specific therapies for the treatment of allergy and autoimmunity. (J Allergy Clin Immunol 2012;129:1647-55.)
|
|