SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bolt J) "

Sökning: WFRF:(Bolt J)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  • Fullman, N., et al. (författare)
  • Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016
  • 2018
  • Ingår i: Lancet. - : Elsevier BV. - 0140-6736. ; 391:10136, s. 2236-2271
  • Tidskriftsartikel (refereegranskat)abstract
    • Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97.1 (95% UI 95.8-98.1) in Iceland, followed by 96.6 (94.9-97.9) in Norway and 96.1 (94.5-97.3) in the Netherlands, to values as low as 18.6 (13.1-24.4) in the Central African Republic, 19.0 (14.3-23.7) in Somalia, and 23.4 (20.2-26.8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91.5 (89.1-936) in Beijing to 48.0 (43.4-53.2) in Tibet (a 43.5-point difference), while India saw a 30.8-point disparity, from 64.8 (59.6-68.8) in Goa to 34.0 (30.3-38.1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4.8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20.9-point to 17.0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17.2-point to 20.4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle-SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view and subsequent provision of quality health care for all populations. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
5.
  •  
6.
  •  
7.
  • Hirao, Yuki, et al. (författare)
  • OGLE-2017-BLG-0406 : Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10(-4) from the light-curve modeling. The ground-only and Spitzer-only data each provide very strong one-dimensional (1D) constraints on the 2D microlens parallax vector pi(E). When combined, these yield a precise measurement of pi(E) and of the masses of the host M-host = 0.56 +/- 0.07 M-circle dot and planet M-planet = 0.41 +/- 0.05 M-Jup. The system lies at a distance D-L = 5.2 +/- 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a(perpendicular to) = 3.5 +/- 0.3 au (i.e., just over twice the snow line). The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10 sigma error.
  •  
8.
  • Kovacic, M., et al. (författare)
  • Light management design in ultra-thin chalcopyrite photovoltaic devices by employing optical modelling
  • 2019
  • Ingår i: Solar Energy Materials and Solar Cells. - : ELSEVIER. - 0927-0248 .- 1879-3398. ; 200
  • Tidskriftsartikel (refereegranskat)abstract
    • In ultra-thin chalcopyrite solar cells and photovoltaic modules, efficient light management is required to increase the photocurrent and to gain in conversion efficiency. In this work we employ optical modelling to investigate different optical approaches and quantify their potential improvements in the short-circuit current density of Cu (In, Ga)Se-2 (CIGS) devices. For structures with an ultra-thin (500 nm) CIGS absorber, we study the improvements related to the introduction of (i) highly reflective metal back reflectors, (ii) internal nano-textures applied to the substrate and (iii) external micro-textures by using a light management foil. In the analysis we use CIGS devices in a PV module configuration, thus, solar cell structure including encapsulation and front glass. A thin Al2O3 layer was considered in the structure at the rear side of CIGS for passivation and diffusion barrier for metal reflectors. We show that not any individual aforementioned approach is sufficient to compensate for the short circuit drop related to ultra-thin absorber, but a combination of a highly reflective back contact and textures (internal or external) is needed to obtain and also exceed the short-circuit current density of a thick (1800 nm) CIGS absorber.
  •  
9.
  • Kovacic, M., et al. (författare)
  • Modelling Supported Design of Light Management Structures in Ultra-Thin Cigs Photovoltaic Devices
  • 2019
  • Ingår i: Informacije midem. - : Drustvo MIDEM. - 0352-9045. ; 49:3, s. 183-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Chalcopyrite solar cells exhibit one of the highest conversion efficiencies among thin-film solar cell technologies (> 23.3%), however a considerably thick absorber >= 1.8 mu m is required for an efficient absorption of the long-wavelength light and collection of charge carriers. In order to minimize the material consumption and to accelerate the fabrication process, further thinning down of the absorber layer is important. Using a thin absorber layer results in a highly reduced photocurrent density and to compensate for it an effective light management needs to be introduced. Experimentally supported, advanced optical simulations in a PV module configuration, i.e. solar cell structure including the encapsulation and front glass are employed to design solutions to increase the short current density of devices with ultra-thin (500 nm) absorbers. In particular (i) highly reflective metal back reflector (BR), (ii) internal nano-textures and (iii) external textures by applying a light management (LM) foil are investigated by simulations. Experimental verification of simulation results is presented for the external texture case. In the scope of this contribution we show that any individual aforementioned approach is not sufficient to compensate for the short circuit current drop of the thin CIGS, but only a combination of highly reflective back contact and introduction of textures (internal or external) is able to compensate and also to exceed (by more than 5 % for internal texture) photocurrent density of a thick (1800 nm) CIGS absorber.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy