SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bopp Laurent) ;mspu:(article)"

Sökning: WFRF:(Bopp Laurent) > Tidskriftsartikel

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Azarian, Clara, et al. (författare)
  • Marine heatwaves and global warming impacts on winter waters in the Southern Indian Ocean
  • 2024
  • Ingår i: Journal of Marine Systems. - 0924-7963. ; 243
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Southern Ocean, the term “winter waters” (WWs) refers to a water mass characterized by a subsurface layer of minimum temperature that plays an important ecological role for marine ecosystems, and in particular for top predators. Given that the Southern Ocean is experiencing warming and intense marine heatwaves (MHWs), particularly at subantarctic latitudes, we investigate here how different levels of warming might impact the presence, depth and minimum temperature of WWs in the Indian sector of the Southern Ocean. In particular, we assess how WWs are impacted by surface MHWs using in situ Argo hydrographic observations and biologging data. The results indicate that WWs are substantially reduced, deeper and warmer during the presence of MHWs. Using the most recent climate projections, we find a significant, but scenario-dependent, southward shift of WWs under global warming. Potential impacts of such WW shifts on pelagic ecosystems, at different timescales (from daily to decadal), are discussed.
  •  
2.
  • Lotze, Heike K., et al. (författare)
  • Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:26, s. 12907-12912
  • Tidskriftsartikel (refereegranskat)abstract
    • While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (+/- 4% SD) under low emissions and 17% (+/- 11% SD) under high emissions by 2100, with an average 5% decline for every 1 degrees C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
  •  
3.
  • Sime, Louise C., et al. (författare)
  • Southern Hemisphere westerly wind changes during the Last Glacial Maximum : model-data comparison
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 64, s. 104-120
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern Hemisphere (SH) westerly winds are thought to be critical to global ocean circulation, productivity, and carbon storage. For example, an equatorward shift in the winds, though its affect on the Southern Ocean circulation, has been suggested as the leading cause for the reduction in atmospheric CO2 during the Last Glacial period. Despite the importance of the winds, it is currently not clear, from observations or model results, how they behave during the Last Glacial. Here, an atmospheric modelling study is performed to help determine likely changes in the SH westerly winds during the Last Glacial Maximum (LGM). Using LGM boundary conditions, the maximum in SH westerlies is strengthened by similar to+1 m s(-1) and moved southward by similar to 2 degrees at the 850 hPa pressure level. Boundary layer stabilisation effects over equatorward extended LGM sea-ice can lead to a small apparent equatorward shift in the wind band at the surface. Further sensitivity analysis with individual boundary condition changes indicate that changes in sea surface temperatures are the strongest factor behind the wind change. The HadAM3 atmospheric simulations, along with published PMIP2 coupled climate model simulations, are then assessed against the newly synthesised database of moisture observations for the LGM. Although the moisture data is the most commonly cited evidence in support of a large equatorward shift in the SH winds during the LGM, none of the models that produce realistic LGM precipitation changes show such a large equatorward shift. In fact, the model which best simulates the moisture proxy data is the HadAM3 LGM simulation which shows a small poleward wind shift. While we cannot prove here that a large equatorward shift would not be able to reproduce the moisture data as well, we show that the moisture proxies do not provide an observational evidence base for it.
  •  
4.
  • Takano, Yohei, et al. (författare)
  • Simulations of ocean deoxygenation in the historical era : insights from forced and coupled models
  • 2023
  • Ingår i: Frontiers in Marine Science. - 2296-7745. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean deoxygenation due to anthropogenic warming represents a major threat to marine ecosystems and fisheries. Challenges remain in simulating the modern observed changes in the dissolved oxygen (O2). Here, we present an analysis of upper ocean (0-700m) deoxygenation in recent decades from a suite of the Coupled Model Intercomparison Project phase 6 (CMIP6) ocean biogeochemical simulations. The physics and biogeochemical simulations include both ocean-only (the Ocean Model Intercomparison Project Phase 1 and 2, OMIP1 and OMIP2) and coupled Earth system (CMIP6 Historical) configurations. We examine simulated changes in the O2 inventory and ocean heat content (OHC) over the past 5 decades across models. The models simulate spatially divergent evolution of O2 trends over the past 5 decades. The trend (multi-model mean and spread) for upper ocean global O2 inventory for each of the MIP simulations over the past 5 decades is 0.03 ± 0.39×1014 [mol/decade] for OMIP1, −0.37 ± 0.15×1014 [mol/decade] for OMIP2, and −1.06 ± 0.68×1014 [mol/decade] for CMIP6 Historical, respectively. The trend in the upper ocean global O2 inventory for the latest observations based on the World Ocean Database 2018 is −0.98×1014 [mol/decade], in line with the CMIP6 Historical multi-model mean, though this recent observations-based trend estimate is weaker than previously reported trends. A comparison across ocean-only simulations from OMIP1 and OMIP2 suggests that differences in atmospheric forcing such as surface wind explain the simulated divergence across configurations in O2 inventory changes. Additionally, a comparison of coupled model simulations from the CMIP6 Historical configuration indicates that differences in background mean states due to differences in spin-up duration and equilibrium states result in substantial differences in the climate change response of O2. Finally, we discuss gaps and uncertainties in both ocean biogeochemical simulations and observations and explore possible future coordinated ocean biogeochemistry simulations to fill in gaps and unravel the mechanisms controlling the O2 changes.
  •  
5.
  • Tittensor, Derek P., et al. (författare)
  • A protocol for the intercomparison of marine fishery and ecosystem models : Fish-MIP v1.0
  • 2018
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 11:4, s. 1421-1442
  • Tidskriftsartikel (refereegranskat)abstract
    • Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy