SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Borch Johnsen Knut) ;pers:(Pedersen Oluf)"

Search: WFRF:(Borch Johnsen Knut) > Pedersen Oluf

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Saxena, Richa, et al. (author)
  • Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:2, s. 142-148
  • Journal article (peer-reviewed)abstract
    • Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958–30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, β (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 × 10−15). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 × 10−17; ratio of insulin to glucose area under the curve, P = 1.3 × 10−16) and diminished incretin effect (n = 804; P = 4.3 × 10−4). We also identified variants at ADCY5 (rs2877716, P = 4.2 × 10−16), VPS13C (rs17271305, P = 4.1 × 10−8), GCKR (rs1260326, P = 7.1 × 10−11) and TCF7L2 (rs7903146, P = 4.2 × 10−10) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09–1.15, P = 4.8 × 10−18).
  •  
2.
  • Benzinou, Michael, et al. (author)
  • Common nonsynonymous variants in PCSK1 confer risk of obesity.
  • 2008
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:8, s. 943-5
  • Journal article (peer-reviewed)abstract
    • Mutations in PCSK1 cause monogenic obesity. To assess the contribution of PCSK1 to polygenic obesity risk, we genotyped tag SNPs in a total of 13,659 individuals of European ancestry from eight independent case-control or family-based cohorts. The nonsynonymous variants rs6232, encoding N221D, and rs6234-rs6235, encoding the Q665E-S690T pair, were consistently associated with obesity in adults and children (P = 7.27 x 10(-8) and P = 2.31 x 10(-12), respectively). Functional analysis showed a significant impairment of the N221D-mutant PC1/3 protein catalytic activity.
  •  
3.
  • Chen, Wei-Min, et al. (author)
  • Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels.
  • 2008
  • In: Journal of Clinical Investigation. - 0021-9738. ; Jun 2, s. 2620-2628
  • Journal article (peer-reviewed)abstract
    • Identifying the genetic variants that regulate fasting glucose concentrations may further our understanding of the pathogenesis of diabetes. We therefore investigated the association of fasting glucose levels with SNPs in 2 genome-wide scans including a total of 5,088 nondiabetic individuals from Finland and Sardinia. We found a significant association between the SNP rs563694 and fasting glucose concentrations (P = 3.5 x 10(-7)). This association was further investigated in an additional 18,436 nondiabetic individuals of mixed European descent from 7 different studies. The combined P value for association in these follow-up samples was 6.9 x 10(-26), and combining results from all studies resulted in an overall P value for association of 6.4 x 10(-33). Across these studies, fasting glucose concentrations increased 0.01-0.16 mM with each copy of the major allele, accounting for approximately 1% of the total variation in fasting glucose. The rs563694 SNP is located between the genes glucose-6-phosphatase catalytic subunit 2 (G6PC2) and ATP-binding cassette, subfamily B (MDR/TAP), member 11 (ABCB11). Our results in combination with data reported in the literature suggest that G6PC2, a glucose-6-phosphatase almost exclusively expressed in pancreatic islet cells, may underlie variation in fasting glucose, though it is possible that ABCB11, which is expressed primarily in liver, may also contribute to such variation.
  •  
4.
  • Helgadottir, Anna, et al. (author)
  • The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm
  • 2008
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:2, s. 217-224
  • Journal article (peer-reviewed)abstract
    • Recently, two common sequence variants on 9p21, tagged by rs10757278-G and rs10811661-T, were reported to be associated with coronary artery disease (CAD)(1-4) and type 2 diabetes (T2D)(5-7), respectively. We proceeded to further investigate the contributions of these variants to arterial diseases and T2D. Here we report that rs10757278-G is associated with, in addition to CAD, abdominal aortic aneurysm (AAA; odds ratio (OR) 1.31, P = 1.2 x 10(-12)) and intracranial aneurysm (OR = 1.29, P = 2.5 x 10(-6)), but not with T2D. This variant is the first to be described that affects the risk of AAA and intracranial aneurysm in many populations. The association of rs10811661-T to T2D replicates in our samples, but the variant does not associate with any of the five arterial diseases examined. These findings extend our insight into the role of the sequence variant tagged by rs10757278-G and show that it is not confined to atherosclerotic diseases.
  •  
5.
  • Lyssenko, Valeriya, et al. (author)
  • Validation of a multi-marker model for the prediction of incident type 2 diabetes mellitus: Combined results of the Inter99 and Botnia studies.
  • 2012
  • In: Diabetes & Vascular Disease Research. - : SAGE Publications. - 1752-8984 .- 1479-1641. ; 9, s. 59-67
  • Journal article (peer-reviewed)abstract
    • Purpose: To assess performance of a biomarker-based score that predicts the five-year risk of diabetes (Diabetes Risk Score, DRS) in an independent cohort that included 15-year follow-up. Method: DRS was developed on the Inter99 cohort, and validated on the Botnia cohort. Performance was benchmarked against other risk-assessment tools comparing calibration, time to event analysis, and net reclassification. Results: The area under the receiver-operating characteristic curve (AUC) was 0.84 for the Inter99 cohort and 0.78 for the Botnia cohort. In the Botnia cohort, DRS provided better discrimination than fasting plasma glucose (FPG), homeostasis model assessment of insulin resistance, oral glucose tolerance test or risk scores derived from Framingham or San Antonio Study cohorts. Overall reclassification with DRS was significantly better than using FPG and glucose tolerance status (p < 0.0001). In time to event analysis, rates of conversion to diabetes in low, moderate, and high DRS groups were significantly different (p < 0.001). Conclusion: This study validates DRS performance in an independent population, and provides a more accurate assessment of T2DM risk than other methods.
  •  
6.
  • Palmer, Nicholette D, et al. (author)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • In: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Journal article (peer-reviewed)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
7.
  • Rung, Johan, et al. (author)
  • Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:10, s. 89-1110
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have identified common variants that only partially explain the genetic risk for type 2 diabetes (T2D). Using genome-wide association data from 1,376 French individuals, we identified 16,360 SNPs nominally associated with T2D and studied these SNPs in an independent sample of 4,977 French individuals. We then selected the 28 best hits for replication in 7,698 Danish subjects and identified 4 SNPs showing strong association with T2D, one of which (rs2943641, P = 9.3 x 10(-12), OR = 1.19) was located adjacent to the insulin receptor substrate 1 gene (IRS1). Unlike previously reported T2D risk loci, which predominantly associate with impaired beta cell function, the C allele of rs2943641 was associated with insulin resistance and hyperinsulinemia in 14,358 French, Danish and Finnish participants from population-based cohorts; this allele was also associated with reduced basal levels of IRS1 protein and decreased insulin induction of IRS1-associated phosphatidylinositol-3-OH kinase activity in human skeletal muscle biopsies.
  •  
8.
  • Zeggini, Eleftheria, et al. (author)
  • Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes
  • 2008
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:5, s. 638-645
  • Journal article (peer-reviewed)abstract
    • Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)(1-11). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and similar to 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P=5.0 x 10(-14)), CDC123-CAMK1D (P=1.2 x 10(-10)), TSPAN8-LGR5 (P=1.1 x 10(-9)), THADA (P=1.1 x 10(-9)), ADAMTS9 (P=1.2 x 10(-8)) and NOTCH2 (P=4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view