SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borg Åke) ;pers:(Ehinger Anna)"

Sökning: WFRF:(Borg Åke) > Ehinger Anna

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aine, Mattias, et al. (författare)
  • Molecular analyses of triple-negative breast cancer in the young and elderly
  • 2021
  • Ingår i: Breast cancer research : BCR. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Breast cancer in young adults has been implicated with a worse outcome. Analyses of genomic traits associated with age have been heterogenous, likely because of an incomplete accounting for underlying molecular subtypes. We aimed to resolve whether triple-negative breast cancer (TNBC) in younger versus older patients represent similar or different molecular diseases in the context of genetic and transcriptional subtypes and immune cell infiltration.PATIENTS AND METHODS: In total, 237 patients from a reported population-based south Swedish TNBC cohort profiled by RNA sequencing and whole-genome sequencing (WGS) were included. Patients were binned in 10-year intervals. Complimentary PD-L1 and CD20 immunohistochemistry and estimation of tumor-infiltrating lymphocytes (TILs) were performed. Cases were analyzed for differences in patient outcome, genomic, transcriptional, and immune landscape features versus age at diagnosis. Additionally, 560 public WGS breast cancer profiles were used for validation.RESULTS: Median age at diagnosis was 62 years (range 26-91). Age was not associated with invasive disease-free survival or overall survival after adjuvant chemotherapy. Among the BRCA1-deficient cases (82/237), 90% were diagnosed before the age of 70 and were predominantly of the basal-like subtype. In the full TNBC cohort, reported associations of patient age with changes in Ki67 expression, PIK3CA mutations, and a luminal androgen receptor subtype were confirmed. Within DNA repair deficiency or gene expression defined molecular subgroups, age-related alterations in, e.g., overall gene expression, immune cell marker gene expression, genetic mutational and rearrangement signatures, amount of copy number alterations, and tumor mutational burden did, however, not appear distinct. Similar non-significant associations for genetic alterations with age were obtained for other breast cancer subgroups in public WGS data. Consistent with age-related immunosenescence, TIL counts decreased linearly with patient age across different genetic TNBC subtypes.CONCLUSIONS: Age-related alterations in TNBC, as well as breast cancer in general, need to be viewed in the context of underlying genomic phenotypes. Based on this notion, age at diagnosis alone does not appear to provide an additional layer of biological complexity above that of proposed genetic and transcriptional phenotypes of TNBC. Consequently, treatment decisions should be less influenced by age and more driven by tumor biology.
  •  
2.
  • Andersson, Alma, et al. (författare)
  • Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis. However, tumor sequencing strategies typically result in loss of spatial information, critical to understand cell interactions and their functional relevance. To address this, we investigate spatial gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We show that expression-based clustering enables data-driven tumor annotation and assessment of intra- and interpatient heterogeneity; from which we discover shared gene signatures for immune and tumor processes. By integration with single cell data, we spatially map tumor-associated cell types to find tertiary lymphoid-like structures, and a type I interferon response overlapping with regions of T-cell and macrophage subset colocalization. We construct a predictive model to infer presence of tertiary lymphoid-like structures, applicable across tissue types and technical platforms. Taken together, we combine different data modalities to define a high resolution map of cellular interactions in tumors and provide tools generalizing across tissues and diseases. While transcriptomics have enhanced our understanding for cancer, spatial transcriptomics enable the characterisation of cellular interactions. Here, the authors integrate single cell data with spatial information for HER2 + tumours and develop tools for the prediction of interactions between tumour-infiltrating cells.
  •  
3.
  • Andersson, Alma, et al. (författare)
  • Spatial Deconvolution of HER2-positive Breast Tumors Reveals Novel Intercellular Relationships
  • 2020
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis. However, tumor sequencing strategies typically result in loss of spatial information, critical to understand cell interactions and their functional relevance. To address this, we investigate spatial gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We show that expression-based clustering enables data-driven tumor annotation and assessment of intra-and interpatient heterogeneity; from which we discover shared gene signatures for immune and tumor processes. We integrate and spatially map tumor-associated types from single cell data to find: segregated epithelial cells, interactions between B and T-cells and myeloid cells, co-localization of macrophage and T-cell subsets. A model is constructed to infer presence of tertiary lymphoid structures, applicable across tissue types and technical platforms. Taken together, we combine different data modalities to define novel interactions between tumor-infiltrating cells in breast cancer and provide tools generalizing across tissues and diseases.
  •  
4.
  • Brueffer, Christian, et al. (författare)
  • Abstract P4-09-03: On the development and clinical value of RNA-sequencing-based classifiers for prediction of the five conventional breast cancer biomarkers: A report from the population-based multicenter SCAN-B study
  • 2018
  • Ingår i: Cancer research. Supplement. - 1538-7445. ; 78:4
  • Konferensbidrag (refereegranskat)abstract
    • Background:In early breast cancer, five histopathological biomarkers are part of current clinical routines and used for determining prognosis and treatment: estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (ERBB2/HER2), Ki67, and Nottingham histological grade (NHG). We aimed to develop classifiers for these biomarkers based on tumor mRNA-sequencing (RNA-seq), compare classification performance to conventional histopathology, and test whether RNA-seq-based predictors could add value for patient risk-stratification.Patients and Methods:In total, 3678 breast tumors were studied. For 405 breast tumors in the training cohort, a comprehensive histopathological biomarker evaluation was performed by three pathology readings to estimate inter-pathologist variability on the original diagnostic slides as well as on repeat immunostains for this study, and the consensus biomarker status for all five conventional biomarkers was determined. Whole transcriptome gene expression profiling was performed by RNA-sequencing on the Illumina platform. Using RNA-seq-derived tumor gene expression data as input, single-gene classifiers (SGC) and multi-gene classifiers (MGC) were trained on the consensus pathology biomarker labels. The trained classifiers were tested on an independent prospective population-based series of 3273 primary breast cancer cases from the multicenter SCAN-B study with median 41 months follow-up (ClinicalTrials.gov identifier NCT02306096), and classifications were evaluated by agreement statistics and by Kaplan-Meier and Cox regression survival analyses.Results:For the histopathological evaluation, pathologist evaluation concordance was high for ER, PgR, and HER2 (average kappa values of .920, .891, and .899, respectively), but moderate for Ki67 and NHG (.734 and .581). Classification concordance between RNA-seq classifiers and histopathology for the independent 3273-cohort was similar to that within histopathology assessments, with SGCs slightly outperforming MGCs. Importantly, patients with discordant results, classified as hormone responsive (HoR+) by histopathology but non-hormone responsive by MGC, presented with significantly inferior overall survival compared to patients with concordant results. These results extended to patients with no adjuvant systemic therapy (hazard ratio, HR, 4.54; 95% confidence interval, CI, 1.42-14.5), endocrine therapy alone (HR 3.46; 95% CI, 2.01-5.95), or receiving chemotherapy (HR 2.57; 95% CI 1.13-5.86). For HoR+ cases receiving endocrine therapy alone, the MGC HoR classifier remained significant after multivariable adjustment (HR 3.14; 95% CI, 1.75-5.65).Conclusions:RNA-seq-based classifiers for the five key early breast cancer biomarkers were generally equivalent to conventional histopathology with regards to classification error rate. However, when benchmarked using overall survival, our RNA-seq classifiers provided added clinical value in particular for cases that are determined by histopathology to be hormone-responsive but by RNA-seq appear hormone-insensitive and have a significantly poorer outcome when treated with endocrine therapy alone
  •  
5.
  • Brueffer, Christian, et al. (författare)
  • Clinical Value of RNA Sequencing–Based Classifiers for Prediction of the Five Conventional Breast Cancer Biomarkers: A Report From the Population-Based Multicenter Sweden Cancerome Analysis Network—Breast Initiative
  • 2018
  • Ingår i: JCO Precision Oncology. - 2473-4284. ; 2, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeIn early breast cancer (BC), five conventional biomarkers—estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), Ki67, and Nottingham histologic grade (NHG)—are used to determine prognosis and treatment. We aimed to develop classifiers for these biomarkers that were based on tumor mRNA sequencing (RNA-seq), compare classification performance, and test whether such predictors could add value for risk stratification.MethodsIn total, 3,678 patients with BC were studied. For 405 tumors, a comprehensive multi-rater histopathologic evaluation was performed. Using RNA-seq data, single-gene classifiers and multigene classifiers (MGCs) were trained on consensus histopathology labels. Trained classifiers were tested on a prospective population-based series of 3,273 BCs that included a median follow-up of 52 months (Sweden Cancerome Analysis Network—Breast [SCAN-B], ClinicalTrials.gov identifier: NCT02306096), and results were evaluated by agreement statistics and Kaplan-Meier and Cox survival analyses.ResultsPathologist concordance was high for ER, PgR, and HER2 (average κ, 0.920, 0.891, and 0.899, respectively) but moderate for Ki67 and NHG (average κ, 0.734 and 0.581). Concordance between RNA-seq classifiers and histopathology for the independent cohort of 3,273 was similar to interpathologist concordance. Patients with discordant classifications, predicted as hormone responsive by histopathology but non–hormone responsive by MGC, had significantly inferior overall survival compared with patients who had concordant results. This extended to patients who received no adjuvant therapy (hazard ratio [HR], 3.19; 95% CI, 1.19 to 8.57), or endocrine therapy alone (HR, 2.64; 95% CI, 1.55 to 4.51). For cases identified as hormone responsive by histopathology and who received endocrine therapy alone, the MGC hormone-responsive classifier remained significant after multivariable adjustment (HR, 2.45; 95% CI, 1.39 to 4.34).ConclusionClassification error rates for RNA-seq–based classifiers for the five key BC biomarkers generally were equivalent to conventional histopathology. However, RNA-seq classifiers provided added clinical value in particular for tumors determined by histopathology to be hormone responsive but by RNA-seq to be hormone insensitive.
  •  
6.
  •  
7.
  • Brueffer, Christian, et al. (författare)
  • The Mutational Landscape of the SCAN-B Real-World Primary Breast Cancer Transcriptome
  • 2020
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Breast cancer is a disease of genomic alterations, of which the complete panorama of somatic mutations and how these relate to molecular subtypes and therapy response is incompletely understood. Within the Sweden Cancerome Analysis Network–Breast project (SCAN-B; ClinicalTrials.govNCT02306096), an ongoing study elucidating the tumor transcriptomic profiles for thousands of breast cancers prospectively, we developed an optimized pipeline for detection of single nucleotide variants and small insertions and deletions from RNA sequencing (RNA-seq) data, and profiled a large real-world population-based cohort of 3,217 breast tumors. We use it to describe the mutational landscape of primary breast cancer viewed through the transcriptome of a large population-based cohort of patients, and relate it to patient overall survival. We demonstrate that RNA-seq can be used to call mutations in important breast cancer genes such asPIK3CA,TP53, andERBB2, as well as the status of key molecular pathways and tumor mutational burden, and identify potentially druggable genes in 86.8% percent of tumors. To make this rich and growing mutational portraiture of breast cancer available for the wider research community, we developed an open source web-based application, the SCAN-B MutationExplorer, accessible athttp://oncogenomics.bmc.lu.se/MutationExplorer. These results add another dimension to the use of RNA-seq as a potential clinical tool, where both gene expression-based and gene mutation-based biomarkers can be interrogated simultaneously and in real-time within one week of tumor sampling.
  •  
8.
  • Brueffer, Christian, et al. (författare)
  • The mutational landscape of the SCAN‐B real‐world primary breast cancer transcriptome
  • 2020
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer is a disease of genomic alterations, of which the panorama of somatic mutations and how these relate to subtypes and therapy response is incompletely understood. Within SCAN‐B (ClinicalTrials.gov: NCT02306096), a prospective study elucidating the transcriptomic profiles for thousands of breast cancers, we developed a RNA‐seq pipeline for detection of SNVs/indels and profiled a real‐world cohort of 3,217 breast tumors. We describe the mutational landscape of primary breast cancer viewed through the transcriptome of a large population‐based cohort and relate it to patient survival. We demonstrate that RNA‐seq can be used to call mutations in genes such as PIK3CA, TP53, and ERBB2, as well as the status of molecular pathways and mutational burden, and identify potentially druggable mutations in 86.8% of tumors. To make this rich dataset available for the research community, we developed an open source web application, the SCAN‐B MutationExplorer (http://oncogenomics.bmc.lu.se/MutationExplorer). These results add another dimension to the use of RNA‐seq as a clinical tool, where both gene expression‐ and mutation‐based biomarkers can be interrogated in real‐time within 1 week of tumor sampling.
  •  
9.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy