SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borgström Magnus) ;pers:(Capasso Federico)"

Sökning: WFRF:(Borgström Magnus) > Capasso Federico

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jain, Vishal, et al. (författare)
  • Bias-dependent spectral tuning in InP nanowire-based photodetectors
  • 2017
  • Ingår i: Nanotechnology. - Bristol : IOP Publishing. - 0957-4484 .- 1361-6528. ; 28:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanowire array ensembles contacted in a vertical geometry are extensively studied and considered strong candidates for next generations of industrial scale optoelectronics. Key challenges in this development deal with optimization of the doping profile of the nanowires and the interface between nanowires and transparent top contact. Here we report on photodetection characteristics associated with doping profile variations in InP nanowire array photodetectors. Bias-dependent tuning of the spectral shape of the responsivity is observed which is attributed to a Schottky-like contact at the nanowire-ITO interface. Angular dependent responsivity measurements, compared with simulated absorption spectra, support this conclusion. Furthermore, electrical simulations unravel the role of possible self-gating effects in the nanowires induced by the ITO/SiO x wrap-gate geometry. Finally, we discuss possible reasons for the observed low saturation current at large forward biases.
  •  
2.
  • Jain, Vishal, et al. (författare)
  • InP/InAsP Nanowire-Based Spatially Separate Absorption and Multiplication Avalanche Photodetectors
  • 2017
  • Ingår i: ACS Photonics. - Washington : American Chemical Society (ACS). - 2330-4022. ; 4:11, s. 2693-2698
  • Tidskriftsartikel (refereegranskat)abstract
    • Avalanche photodetectors (APDs) are key components in optical communication systems due to their increased photocurrent gain and short response time as compared to conventional photodetectors. A detector design where the multiplication region is implemented in a large band gap material is desired to avoid detrimental Zener tunneling leakage currents, a concern otherwise in smaller band gap materials required for absorption at 1.3/1.55 μm. Self-assembled III-V semiconductor nanowires offer key advantages such as enhanced absorption due to optical resonance effects, strain-relaxed heterostructures, and compatibility with mainstream silicon technology. Here, we present electrical and optical characteristics of single InP and InP/InAsP nanowire APD structures. Temperature-dependent breakdown characteristics of p+-n-n+ InP nanowire devices were investigated first. A clear trap-induced shift in breakdown voltage was inferred from I-V measurements. An improved contact formation to the p+-InP segment was observed upon annealing, and its effect on breakdown characteristics was investigated. The band gap in the absorption region was subsequently varied from pure InP to InAsP to realize spatially separate absorption and multiplication APDs in heterostructure nanowires. In contrast to the homojunction APDs, no trap-induced shifts were observed for the heterostructure APDs. A gain of 12 was demonstrated for selective optical excitation of the InAsP segment. Additional electron-beam-induced current measurements were carried out to investigate the effect of local excitation along the nanowire on the I-V characteristics. Simulated band profiles and electric field distributions support our interpretation of the experiments. Our results provide important insight for optimization of avalanche photodetector devices based on III-V nanowires.
  •  
3.
  • Jain, Vishal, 1989-, et al. (författare)
  • Large Area Photodetectors at 1.3/1.55 μm Based on InP/InAsP NWs
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • Optical communication systems benefit a lot from APDs due to their increased photocurrent gain as compared to conventional photodetectors. An avalanche region in a high bandgap material is especially useful to avoid the tunneling leakage currents in smaller bandgap materials needed for absorption at 1.3/1.55 µm wavelengths. Self-assembled III-V semiconductor nanowires have a key advantage owing to the enhanced absorption due to optical resonance effects and the strain relaxation in NWs, thus facilitating monolithic integration of different heterostructures on cheaper substrates. Here, we present electrical and optical results from large ensembles of InP/InAsP NWs, axially grown on p+ InP substrates. The NW base consists of an InP p-n junction acting as the avalanche region followed by an InP/InAsP absorption region, and ending with a top InP n+-segment. The 130nm diameter NW arrays are contacted in a vertical geometry using SiO2 as the insulating layer and ITO as the top contact. The n-doping in the avalanche region is varied to study it’s influence on the avalanche mechanism. Also the bandgap in the absorption region is varied from pure InP to smaller bandgap InAsP by varying the As content. Clear interband signals from different crystal phases of InP/InAsP are observed in photocurrent spectroscopy. Moreover, the photocurrent spectra are consistent with spatially resolved photoluminescence signals. We also report on polarization and angle dependent photocurrent response of the NW array.
  •  
4.
  • Jain, Vishal, 1989-, et al. (författare)
  • Large area photodetectors based on InP NWs with InAs/InAsP QWs
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • Focal plane arrays have a widespread use in infrared imaging, which often rely on cryogenic cooling to curtail the dark current level necessary for a reasonable signal-to-noise ratio. Quantum well (QW) infrared photodetectors are uniform over large areas, but suffer from a severe drawback related to the selection rules for intersubband absorption. An interesting alternative is self-assembled III-V nanowires offering a key advantage owing to the enhanced absorption by optical resonance effects and strain relaxation.We present electrical and optical results from large ensembles of n+-i-n+ InP NWs, axially grown on InP substrates with InAs/InAsP QWs embedded within the i-segment, designed for both interband and intersubband detection. The NWs are contacted in a vertical geometry using 50 nm SiO2 as the insulating layer and ITO as the top contact. We first investigate the crystal quality of the InAsP QWs grown in 180 nm diameter NWs, using PL, CL and TEM. To achieve more abrupt InAs/InAsP QWs, we grow 130 nm diameter NWs and deplete the In present in the Au catalysts. The effect of n-doping on the device performance is studied by fabricating two different NW geometries, with and without an n+-segment grown before the nominal i-segment in the NW. In addition, the position of the QWs within the i-segment is varied to further scrutinize effects related to doping and crystal structure. Finally, we report spectrally resolved photocurrent results from the QWs in the near-infrared region and discuss about the further developments needed for intersubband detection.
  •  
5.
  • Jain, Vishal, 1989-, et al. (författare)
  • A comparative study of nanowire based infrared p+-i-n+ photodetectors
  • 2012
  • Konferensbidrag (refereegranskat)abstract
    • We present a comparative study of electrical and optical properties of two types of p+-i-n+ photodetectors based on self-assembled ensembles of vertical InP nanowires (NWs) monolithically grown on InP. The detectors differ in the type of p+ contact, one detector geometry has p+-i-n+ segments integrated into the NWs (type A) while the other detector has i-n+ NW segments grown directly on a p+ substrate(type B). The samples were prepared by first depositing 80 nm Au nanoparticles on a p+ InP substrate using an aerosol technique and subsequently growing NWs using MOVPE. The NWs have a polytypecrystal structure of alternating wurtzite and zincblende segments. The processing of the detectors include deposition of SiO2, followed by an etching step to remove the oxide from the tip of the NWs, and finally sputtering of ITO on 1x1 mm2 device areas. The two most prominent differences between the detectors concern the current-voltage (I-V) characteristics and the spatial location of generated photocurrent. From spectrally resolved photocurrent measurements, we conclude that the photocurrent in detector type A is primarily generated in the NWs, whereas the photocurrent in type B detectors mainly stems from the substrate. Photogenerated carriers in the substrate diffuse to the NWs where they are effectively funnelled into the NWs. The I-V characteristics of the type A detector displays a non-trivial transport behaviour for forward biases, whereas type B shows excellent rectifying behavior with an ideality factor of about 2.5. We will discuss detailed analysis of the spectral fingerprints of the two detector types revealing the mixed crystal phase of the polytype NWs and bandstructure effects, temperature dependence of the I-V characteristics and typical photodetector parameters.
  •  
6.
  • Jain, Vishal, et al. (författare)
  • Study of photocurrent generation in InP nanowire-based p(+)-i-n(+) photodetectors
  • 2014
  • Ingår i: Nano Reseach. - Beijing & Berlin/Heidelberg : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 7:4, s. 544-552
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on electrical and optical properties of p(+)-i-n(+)photodetectors/solar cells based on square millimeter arrays of InP nanowires (NWs) grown on InP substrates. The study includes a sample series where the p(+)-segment length was varied between 0 and 250 nm, as well as solar cells with 9.3% efficiency with similar design. The electrical data for all devices display clear rectifying behavior with an ideality factor between 1.8 and 2.5 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p(+)-segment length. Without a p(+)-segment, photogenerated carriers funneled from the substrate into the NWs contribute strongly to the photocurrent. Adding a p(+)-segment decouples the substrate and shifts the depletion region, and collection of photogenerated carriers, to the NWs, in agreement with theoretical modeling. In optimized solar cells, clear spectral signatures of interband transitions in the zinc blende and wurtzite InP layers of the mixed-phase i-segments are observed. Complementary electroluminescence, transmission electron microscopy (TEM), as well as measurements of the dependence of the photocurrent on angle of incidence and polarization, support our interpretations.
  •  
7.
  • Pettersson, Håkan, 1962-, et al. (författare)
  • Electrical and optical properties of InP nanowire ensemble p(+)-i-n(+) photodetectors
  • 2012
  • Ingår i: Nanotechnology. - Bristol, UK : Institute of Physics Publishing (IOPP). - 0957-4484 .- 1361-6528. ; 23:13
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a comprehensive study of electrical and optical properties of efficient near-infrared p(+)-i-n(+) photodetectors based on large ensembles of self-assembled, vertically aligned i-n(+) InP nanowires monolithically grown on a common p(+) InP substrate without any buffer layer. The nanowires have a polytype modulated crystal structure of wurtzite and zinc blende. The electrical data display excellent rectifying behavior with an ideality factor of about 2.5 at 300 K. The ideality factor scales with 1/T, which possibly reflects deviations from classical transport models due to the mixed crystal phase of the nanowires. The observed dark leakage current is of the order of merely similar to 100 fA/nanowire at 1 V reverse bias. The detectors display a linear increase of the photocurrent with reverse bias up to about 10 pA/nanowire at 5 V. From spectrally resolved measurements, we conclude that the photocurrent is primarily generated by funneling photogenerated carriers from the substrate into the NWs. Contributions from direct excitation of the NWs become increasingly important at low temperatures. The photocurrent decreases with temperature with an activation energy of about 50 meV, which we discuss in terms of a temperature-dependent diffusion length in the substrate and perturbed transport through the mixed-phase nanowires. © 2012 IOP Publishing Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy