SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borgström Magnus) ;pers:(Pettersson Håkan)"

Sökning: WFRF:(Borgström Magnus) > Pettersson Håkan

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jafari Jam, Reza, et al. (författare)
  • III-V nanowire synthesis by use of electrodeposited gold particles
  • 2015
  • Ingår i: Nano letters (Print). - Washington, DC : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 15:1, s. 134-138
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconductor nanowires are great candidates for building novel electronic devices. Considering the cost of fabricating such devices, substrate reuse and gold consumption are the main concerns. Here we report on implementation of high throughput gold electrodeposition for selective deposition of metal seed particles in arrays defined by lithography for nanowire synthesis. By use of this method, a reduction in gold consumption by a factor of at least 300 was achieved, as compared to conventional thermal evaporation for the same pattern. Because this method also facilitates substrate reuse, a significantly reduced cost of the final device is expected. We investigate the morphology, crystallography, and optical properties of InP and GaAs nanowires grown from electrodeposited gold seed particles and compare them with the properties of nanowires grown from seed particles defined by thermal evaporation of gold. We find that nanowire synthesis, as well as the material properties of the grown nanowires are comparable and quite independent of the gold deposition technique. On the basis of these results, electrodeposition is proposed as a key technology for large-scale fabrication of nanowire-based devices.
  •  
2.
  •  
3.
  • Jafari Jam, Reza, et al. (författare)
  • Template-assisted vapour-liquid-solid growth of InP nanowires on (001) InP and Si substrates
  • 2020
  • Ingår i: Nanoscale. - Cambridge : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 12:2, s. 888-894
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the synthesis of vertical InP nanowire arrays on (001) InP and Si substrates using template-assisted vapour-liquid-solid growth. A thick silicon oxide layer was first deposited on the substrates. The samples were then patterned by electron beam lithography and deep dry etching through the oxide layer down to the substrate surface. Gold seed particles were subsequently deposited in the holes of the pattern by the use of pulse electrodeposition. The subsequent growth of nanowires by the vapour-liquid-solid method was guided towards the [001] direction by the patterned oxide template, and displayed a high growth yield with respect to the array of holes in the template. In order to confirm the versatility and robustness of the process, we have also demonstrated guided growth of InP nanowire p-n junctions and InP/InAs/InP nanowire heterostructures on (001) InP substrates. Our results show a promising route to monolithically integrate III-V nanowire heterostructure devices with commercially viable (001) silicon platforms.
  •  
4.
  • Jain, Vishal, et al. (författare)
  • Bias-dependent spectral tuning in InP nanowire-based photodetectors
  • 2017
  • Ingår i: Nanotechnology. - Bristol : IOP Publishing. - 0957-4484 .- 1361-6528. ; 28:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanowire array ensembles contacted in a vertical geometry are extensively studied and considered strong candidates for next generations of industrial scale optoelectronics. Key challenges in this development deal with optimization of the doping profile of the nanowires and the interface between nanowires and transparent top contact. Here we report on photodetection characteristics associated with doping profile variations in InP nanowire array photodetectors. Bias-dependent tuning of the spectral shape of the responsivity is observed which is attributed to a Schottky-like contact at the nanowire-ITO interface. Angular dependent responsivity measurements, compared with simulated absorption spectra, support this conclusion. Furthermore, electrical simulations unravel the role of possible self-gating effects in the nanowires induced by the ITO/SiO x wrap-gate geometry. Finally, we discuss possible reasons for the observed low saturation current at large forward biases.
  •  
5.
  • Jain, Vishal, et al. (författare)
  • InP/InAsP Nanowire-Based Spatially Separate Absorption and Multiplication Avalanche Photodetectors
  • 2017
  • Ingår i: ACS Photonics. - Washington : American Chemical Society (ACS). - 2330-4022. ; 4:11, s. 2693-2698
  • Tidskriftsartikel (refereegranskat)abstract
    • Avalanche photodetectors (APDs) are key components in optical communication systems due to their increased photocurrent gain and short response time as compared to conventional photodetectors. A detector design where the multiplication region is implemented in a large band gap material is desired to avoid detrimental Zener tunneling leakage currents, a concern otherwise in smaller band gap materials required for absorption at 1.3/1.55 μm. Self-assembled III-V semiconductor nanowires offer key advantages such as enhanced absorption due to optical resonance effects, strain-relaxed heterostructures, and compatibility with mainstream silicon technology. Here, we present electrical and optical characteristics of single InP and InP/InAsP nanowire APD structures. Temperature-dependent breakdown characteristics of p+-n-n+ InP nanowire devices were investigated first. A clear trap-induced shift in breakdown voltage was inferred from I-V measurements. An improved contact formation to the p+-InP segment was observed upon annealing, and its effect on breakdown characteristics was investigated. The band gap in the absorption region was subsequently varied from pure InP to InAsP to realize spatially separate absorption and multiplication APDs in heterostructure nanowires. In contrast to the homojunction APDs, no trap-induced shifts were observed for the heterostructure APDs. A gain of 12 was demonstrated for selective optical excitation of the InAsP segment. Additional electron-beam-induced current measurements were carried out to investigate the effect of local excitation along the nanowire on the I-V characteristics. Simulated band profiles and electric field distributions support our interpretation of the experiments. Our results provide important insight for optimization of avalanche photodetector devices based on III-V nanowires.
  •  
6.
  • Jain, Vishal, 1989-, et al. (författare)
  • Large Area Photodetectors at 1.3/1.55 μm Based on InP/InAsP NWs
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • Optical communication systems benefit a lot from APDs due to their increased photocurrent gain as compared to conventional photodetectors. An avalanche region in a high bandgap material is especially useful to avoid the tunneling leakage currents in smaller bandgap materials needed for absorption at 1.3/1.55 µm wavelengths. Self-assembled III-V semiconductor nanowires have a key advantage owing to the enhanced absorption due to optical resonance effects and the strain relaxation in NWs, thus facilitating monolithic integration of different heterostructures on cheaper substrates. Here, we present electrical and optical results from large ensembles of InP/InAsP NWs, axially grown on p+ InP substrates. The NW base consists of an InP p-n junction acting as the avalanche region followed by an InP/InAsP absorption region, and ending with a top InP n+-segment. The 130nm diameter NW arrays are contacted in a vertical geometry using SiO2 as the insulating layer and ITO as the top contact. The n-doping in the avalanche region is varied to study it’s influence on the avalanche mechanism. Also the bandgap in the absorption region is varied from pure InP to smaller bandgap InAsP by varying the As content. Clear interband signals from different crystal phases of InP/InAsP are observed in photocurrent spectroscopy. Moreover, the photocurrent spectra are consistent with spatially resolved photoluminescence signals. We also report on polarization and angle dependent photocurrent response of the NW array.
  •  
7.
  • Jain, Vishal, 1989-, et al. (författare)
  • Large area photodetectors based on InP NWs with InAs/InAsP QWs
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • Focal plane arrays have a widespread use in infrared imaging, which often rely on cryogenic cooling to curtail the dark current level necessary for a reasonable signal-to-noise ratio. Quantum well (QW) infrared photodetectors are uniform over large areas, but suffer from a severe drawback related to the selection rules for intersubband absorption. An interesting alternative is self-assembled III-V nanowires offering a key advantage owing to the enhanced absorption by optical resonance effects and strain relaxation.We present electrical and optical results from large ensembles of n+-i-n+ InP NWs, axially grown on InP substrates with InAs/InAsP QWs embedded within the i-segment, designed for both interband and intersubband detection. The NWs are contacted in a vertical geometry using 50 nm SiO2 as the insulating layer and ITO as the top contact. We first investigate the crystal quality of the InAsP QWs grown in 180 nm diameter NWs, using PL, CL and TEM. To achieve more abrupt InAs/InAsP QWs, we grow 130 nm diameter NWs and deplete the In present in the Au catalysts. The effect of n-doping on the device performance is studied by fabricating two different NW geometries, with and without an n+-segment grown before the nominal i-segment in the NW. In addition, the position of the QWs within the i-segment is varied to further scrutinize effects related to doping and crystal structure. Finally, we report spectrally resolved photocurrent results from the QWs in the near-infrared region and discuss about the further developments needed for intersubband detection.
  •  
8.
  •  
9.
  • Karimi, Mohammad, 1988-, et al. (författare)
  • Infrared Photodetectors Based on Nanowire Arrays – Towards Far Infrared Region
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • Nanowire semiconductors are promising candidates for optoelectronic applications such as solar cells, photodetectors and lasers due to their quasi-1D geometry and large surface to volume ratio. The functional wavelength range of NW-based detectors is typically limited to the visible/near-infrared region. In this work, we present electrical and optical properties of novel IR photodetectors based on large square millimeter ensembles (>1million) of vertically processed semiconductor heterostructure nanowires (NWs) grown on InP substrates which operates in longer wavelengths. InP NWs comprising single or multiple (20) InAs/InAsP QDics axially embedded in an n-i-n geometry, have been grown on InP substrates using MOVPE. The NWs are contacted in vertical direction by ALD deposition of 50 nm SiO2 as an insulating layer followed by sputtering of ITO and evaporation of Ti and Au as top contact layer. In order to extend the sensitivity range to the mid-wavelength and long-wavelength regions, the intersubband transition within conduction band of InAsP QDisc is suggested. We present first experimental indications of intersubband photocurrent in NW geometry and discuss important design parameters for realization of intersubband detectors. Key advantages with the proposed design include large degree of freedom in choice of materials compositions, possible enhanced optical resonance effects due to periodically ordered NW arrays and the compatibility with silicon substrates. We believe that our novel detector design offers the route towards monolithic integration of compact and sensitive III-V NW long wavelength detectors with Si technology.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34
Typ av publikation
tidskriftsartikel (20)
konferensbidrag (13)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (33)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Samuelson, Lars (30)
Borgström, Magnus (20)
Pettersson, Håkan, 1 ... (19)
Heurlin, Magnus (15)
Borgström, Magnus T. (13)
visa fler...
Jain, Vishal, 1989- (9)
Nowzari, Ali (8)
Wallentin, Jesper (7)
Karimi, Mohammad (7)
Capasso, Federico (7)
Zeng, Xulu (6)
Storm, Kristian (5)
Berg, Alexander (4)
Graczyk, Mariusz (3)
Lindgren, David (3)
Gustafsson, Anders (3)
Maximov, Ivan (2)
Deppert, Knut (2)
Adham, Kristi (2)
Hrachowina, Lukas (2)
Landin, Lars, 1948- (2)
Kvennefors, Anders (2)
Messing, Maria (2)
Barrigón, Enrique (2)
Mergenthaler, Kilian (2)
Linke, Heiner (2)
Seifert, Werner (1)
Johansson, Jonas (1)
Zhao, Yue (1)
Montelius, Lars (1)
Aghaeipour, Mahtab (1)
Anttu, Nicklas (1)
Nylund, Gustav (1)
Pettersson, Håkan, P ... (1)
Samuelson, Lars, Pro ... (1)
Canali, Carlo M. (1)
Beech, Jason P. (1)
Asoli, Damir (1)
Kivisaari, Pyry (1)
Stehr, Jan Eric (1)
Buyanova, Irina (1)
Fröberg, Linus (1)
Bermeo, Marie (1)
Hultin, Olof (1)
Boix, Virgínia (1)
Ribayrol, Aline (1)
Conache, Gabriela (1)
Gray, Struan (1)
Hosseinnia, Ali (1)
visa färre...
Lärosäte
Högskolan i Halmstad (30)
Lunds universitet (26)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
visa fler...
RISE (1)
visa färre...
Språk
Engelska (34)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (31)
Teknik (23)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy