SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boström Dan) ;pers:(Olwa Joseph)"

Sökning: WFRF:(Boström Dan) > Olwa Joseph

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boman, Christoffer, et al. (författare)
  • Development of innovative small(micro)-scale biomass-based CHP technologies
  • 2017
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • To enhance the overall efficiency of the use of biomass in the energy sector in Europe, the large electricity production potential from small-scale biomass heating systems should be utilised. So far, no technologically sound (in terms of efficiency and reliability) and economically affordable micro- and small-scale biomass CHP technologies are, however, available. Therefore, the present ERA-NET project (MiniBioCHP) aimed at the further development and test of new CHP technologies based on small-scale biomass combustion in the electric capacity range between some W and 100 kW. Within the project, an international consortium consisting of 12 partners from 4 countries, including university institutions, institutes and industry (both engineering and manufacturing), collaborated closely to perform high level R&D on three promising micro/small-scale biomass based CHP technologies which are covering a broad range of applications in the residential heating sector. The Austrian engineering company BIOS, coordinated the international project. The project was based on earlier basic research and development work related to these promising new technologies and aimed at the achievement of a technological level which allows a first (commercial) demonstration after the end of the project. The three CHP concepts included in the MiniBioCHP project were;1. Pellet stoves with a thermoelectric generator (TEG)2. Small-scale biomass boilers (10-30 kWth) with a micro-ORC process3. High temperature heat exchanger (HT-HE) for an externally fired gas turbine (EFGT)The Swedish part of the project was focused on the development of the concept of biomass based EFGT with dedicated R&D activities related to the development of the HT-HE system. The Swedish project consisted of the research partners Umeå University (project leader), Luleå University of Technology, Chalmers University of Technology and RISE Research Institutes of Sweden, together with the industrial partners Enertech AB/Osby Parca and Ecergy. The expertise of the Swedish partners regarding ash related problems, grate boiler combustion and modelling, deposit formation and high temperature corrosion, were combined with the know-how of a Polish partner regarding HT-HE design, construction, testing and optimisation.The HT-HE is the most crucial component in EFGT processes significantly influencing the investment costs, availabilities as well as the efficiencies that can be achieved. With a thermal capacity from several hundred kW up to 2-3 MWth) the CHP technology based on a biomass boiler and an EFGT is suitable for district heating systems, or process heat consumers. The electricity produced by the gas turbine (up to some 100 kWel) can be used to cover the own electricity consumption of a company and/or fed into the grid. Even though the concept of biomass based EFGT has been an interesting alternative for small-scale CHP production for some decades, and R&D activities have been undertaken, tackling both economic and technical aspects, only a few pilot-plants have been in operation and no initiative has so far reached the level of commercial implementation. Thus, the concept of EFGT fed with biomass is still considered to be in a rather early development stage and the main technical challenges are related to alkali deposit induced corrosion and thermal stress of the HT-HE material, turbine design/operation and system integration.Within the present project, a HT-HE prototype aimed for an EFGT system was therefore designed, constructed and successfully tested at flue gas temperatures up to 900°C. Thus, appropriate guidelines for a compact design of the HT-HE and recommendations have been worked out to minimize thermal stresses as well as ash related problems regarding ash deposit formation and high temperature corrosion in a biomass boiler system. Furthermore, different concepts for the overall biomass based EFGT system have been worked out and evaluated. The outcome of the project will hopefully be used in the further development work and form the basis for a first testing and demonstration plant within the coming years.
  •  
2.
  •  
3.
  •  
4.
  • Olwa, Joseph, et al. (författare)
  • Potassium retention in updraft gasification of wood
  • 2013
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 27:11, s. 6718-6724
  • Tidskriftsartikel (refereegranskat)abstract
    • The release of compounds of K with producer gas during biomass gasification is known to play significant roles in fouling and high-temperature corrosion in boilers and high-temperature heat exchangers as well as blades in gas turbines that use producer gas as fuel. These phenomena are a major setback in the application of biomass fuel in combination with advanced process conditions. Updraft gasification provides gas filtering by the fuel bed with a gas cooling effect, conditions anticipated to create an avenue for K retention in the gasifier. The objective of this study was to determine the K retention potential of such gasifiers during wood gasification. Samples for the determination of the fate of K compounds included in the feedstock were collected from the generated producer gas using Teflon filters and gas wash bottles and also from wall deposits and ash residues. Analyses of samples were carried out using inductively coupled plasma-atomic emission spectrometry/mass spectrometry and X-ray diffraction methods. The finding was that about 99% of K was retained in the gasifier. K was found in the ash samples as a crystalline phase of K 2Ca(CO3)2(s) (fairchildite). A possible reaction mechanism leading to the formation of K2Ca(CO 3)2 is discussed in the paper. The 1% K understood as released, equivalent to 1200 ppbw content of K entrained in the producer gas stream, exceeds a known limit for application of the gas in conventional gas turbines. This would suggest application of the gas in an externally fired gas turbine system, where some limited K and other depositions in the heat exchanger can be relatively easy to handle.
  •  
5.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy