SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Boudon D.) "

Search: WFRF:(Boudon D.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Jong, R. S., et al. (author)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • In: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Journal article (other academic/artistic)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  •  
2.
  • Gordon, I.E., et al. (author)
  • The HITRAN2020 molecular spectroscopic database
  • 2022
  • In: Journal of Quantitative Spectroscopy and Radiative Transfer. - : Elsevier. - 0022-4073 .- 1879-1352. ; 277
  • Journal article (peer-reviewed)abstract
    • The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.
  •  
3.
  • Dubernet, M. L., et al. (author)
  • The virtual atomic and molecular data centre (VAMDC) consortium
  • 2016
  • In: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 49:7
  • Journal article (peer-reviewed)abstract
    • The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.
  •  
4.
  • Finke, Aaron D., et al. (author)
  • The 6,6-Dicyanopentafulvene Core : A Template for the Design of Electron-Acceptor Compounds
  • 2015
  • In: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 21:22, s. 8168-8176
  • Journal article (peer-reviewed)abstract
    • The electron-accepting ability of 6,6-dicyanopentafulvenes (DCFs) can be varied extensively through substitution on the five-membered ring. The reduction potentials for a set of 2,3,4,5-tetraphenyl-substituted DCFs, with varying substituents at the para-position of the phenyl rings, strongly correlate with their Hammett sigma(p)-parameters. By combining cyclic voltammetry with DFT calculations ((U)B3LYP/6-311+G(d)), using the conductor-like polarizable continuum model (CPCM) for implicit solvation, the absolute reduction potentials of a set of twenty DCFs were reproduced with a mean absolute deviation of 0.10eV and a maximum deviation of 0.19eV. Our experimentally investigated DCFs have reduction potentials within 3.67-4.41eV, however, the computations reveal that DCFs with experimental reduction potentials as high as 5.3eV could be achieved, higher than that of F-4-TCNQ (5.02eV). Thus, the DCF core is a template that allows variation in the reduction potentials by about 1.6eV.
  •  
5.
  • Galle, Bo, 1952, et al. (author)
  • NOVAC – Network for Observation of Volcanic and Atmospheric Change, recent developments and present status
  • 2011
  • In: 11th IAVCEI-CCVG Gas Workshop, September 1 - 10, 2011, Kamchatka, Russia.
  • Conference paper (peer-reviewed)abstract
    • The NOVAC project, funded by European Union, was started in October 2005 with the aim to establish a global network of stations for the quantitative measurement of volcanic gas emissions. The network is based on a novel type of instrument, the Scanning Dual-beam mini-DOAS. Primarily theinstruments will be used to provide new parameters in the toolbox of observatories for gas emission estimates, geophysical research and hazard assessment. In addition, data are exploited for other scientific purposes, e.g. global estimates of volcanic gas emissions, regional to global statistical analysis, and studies of atmospheric chemistry. In particular large scale validation of satellite measurements of volcanic gas emissions will be possible, bringing space-borne observation of volcanoes a significant step forward.The Scanning Dual-beam Mini-DOAS instrument is capable of real-time automatic, unattended measurement of the total emission fluxes of SO2 and BrO from a volcano with better then 5 minutes time resolution during daylight. The high time-resolution of the data enables correlations with othergeophysical data, e.g. seismicity, thus significantly extending the information available for real-time hazard assessment and research. By comparing high time resolution gas emission data with emissions from neighboring volcanoes on different geographical scales, or with other geophysical events (earthquakes, tidal waves) mechanisms of volcanic forcing may be revealed.The network today encompasses 58 instruments installed on 24 volcanoes, including some of the most active and strongest degassing volcanoes in the world.In addition a mobile version of the instrument has been developed intended for rapid deployment at a volcano in relation to a volcanic crisis.The project and its present status will be presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view