SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bourgeois Stephane) ;pers:(Deloukas Panos)"

Sökning: WFRF:(Bourgeois Stephane) > Deloukas Panos

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gottlieb, Assaf, et al. (författare)
  • Cohort-specific imputation of gene expression improves prediction of warfarin dose for African Americans
  • 2017
  • Ingår i: Genome Medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genome-wide association studies are useful for discovering genotype-phenotype associations but are limited because they require large cohorts to identify a signal, which can be population-specific. Mapping genetic variation to genes improves power and allows the effects of both protein-coding variation as well as variation in expression to be combined into "gene level" effects. Methods: Previous work has shown that warfarin dose can be predicted using information from genetic variation that affects protein-coding regions. Here, we introduce a method that improves dose prediction by integrating tissue-specific gene expression. In particular, we use drug pathways and expression quantitative trait loci knowledge to impute gene expression-on the assumption that differential expression of key pathway genes may impact dose requirement. We focus on 116 genes from the pharmacokinetic and pharmacodynamic pathways of warfarin within training and validation sets comprising both European and African-descent individuals. Results: We build gene-tissue signatures associated with warfarin dose in a cohort-specific manner and identify a signature of 11 gene-tissue pairs that significantly augments the International Warfarin Pharmacogenetics Consortium dosage-prediction algorithm in both populations. Conclusions: Our results demonstrate that imputed expression can improve dose prediction and bridge population-specific compositions. MATLAB code is available at https://github.com/assafgo/warfarin-cohort.
  •  
2.
  • Perera, Minoli A., et al. (författare)
  • Genetic variants associated with warfarin dose in African-American individuals : a genome-wide association study
  • 2013
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 382:9894, s. 790-796
  • Tidskriftsartikel (refereegranskat)abstract
    • Background VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans. Methods We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged >= 18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 -1639G -> A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5x10(-8) in the discovery cohort and p<0.0038 in the replication cohort. Findings The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1.51x10(-8)). This association was confirmed in the replication cohort (p=5.04x10(-5)); analysis of the two cohorts together produced a p value of 4.5x10(-12). Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6.92 mg/week and those homozygous 9.34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement). Interpretation A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population.
  •  
3.
  • Takeuchi, Fumihiko, et al. (författare)
  • A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose
  • 2009
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 5:3, s. e1000433-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5×10−7) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ~30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ~12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10−78) at SNPs clustering near VKORC1 and the second lowest p-values (p<10−31) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3×10−10) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.Author SummaryRecently, geneticists have begun assaying hundreds of thousands of genetic markers covering the entire human genome to systematically search for and identify genes that cause disease. We have extended this “genome-wide association study” (GWAS) method by assaying ~326,000 markers in 1,053 Swedish patients in order to identify genes that alter response to the anticoagulant drug warfarin. Warfarin is widely prescribed to reduce blood clotting in order to protect high-risk patients from stroke, thrombosis, and heart attack. But patients vary widely (20-fold) in the warfarin dose needed for proper blood thinning, which means that initial doses in some patients are too high (risking severe bleeding) or too low (risking serious illness). Our GWAS detected two genes (VKORC1, CYP2C9) already known to cause ~40% of the variability in warfarin dose and discovered a new gene (CYP4F2) contributing 1%–2% of the variability. Since our GWAS searched the entire genome, additional genes having a major influence on warfarin dose might not exist or be found in the near-term. Hence, clinical trials assessing patient benefit from individualized dose forecasting based on a patient's genetic makeup at VKORC1, CYP2C9 and possibly CYP4F2 could provide state-of-the-art clinical benchmarks for warfarin use during the foreseeable future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy