SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Boxer Adam) "

Search: WFRF:(Boxer Adam)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Illán-Gala, Ignacio, et al. (author)
  • Plasma tau and neurofilament light in frontotemporal lobar degeneration and Alzheimer's disease.
  • 2021
  • In: Neurology. - 1526-632X. ; 96:5, s. e671-e683
  • Journal article (peer-reviewed)abstract
    • To test the hypothesis that plasma total tau (t-tau) and neurofilament light chain (NfL) concentrations may have a differential role in the study of frontotemporal lobar degeneration syndromes (FTLD-S) and clinically-diagnosed Alzheimer's disease (AD-S), we determined their diagnostic and prognostic value in FTLD-S and AD-S and their sensitivity to pathologic diagnoses.We measured plasma t-tau and NfL with the Simoa platform in 265 participants: 167 FTLD-S, 43 AD-S, and 55 healthy controls (HC), including 82 pathology-proven cases (50 FTLD-Tau, 18 FTLD-TDP, 2 FTLD-FUS, and 12 AD) and 98 participants with amyloid PET. We compared cross-sectional and longitudinal biomarker concentrations between groups, their correlation with clinical measures of disease severity, progression and survival and cortical thickness.Plasma NfL, but not plasma t-tau discriminated FTLD-S from HC and AD-S from HC. Both plasma NfL and t-tau were poor discriminators between FLTD-S and AD-S. In pathology confirmed cases, plasma NfL was higher in FTLD than AD and in FTLD-TDP compared to FTLD-Tau, after accounting for age and disease severity. Plasma NfL, but not plasma t-tau, predicted clinical decline and survival and correlated with regional cortical thickness in both FTLD-S and AD-S. The combination of plasma NfL with plasma t-tau did not outperform plasma NfL alone.Plasma NfL is superior to plasma t-tau for the diagnosis and prediction of clinical progression of FTLD-S and AD-S.This study provides Class III evidence that plasma NfL has superior diagnostic and prognostic performance than plasma t-tau in FTLD and AD.
  •  
2.
  • Wang, Li-San, et al. (author)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Journal article (peer-reviewed)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
3.
  • Boman, Andrea, et al. (author)
  • Distinct lysosomal network protein profiles in parkinsonian syndrome cerebrospinal fluid
  • 2016
  • In: Journal of Parkinson's Disease. - : IOS Press. - 1877-7171 .- 1877-718X. ; 6:2, s. 307-315
  • Journal article (peer-reviewed)abstract
    • Introduction: Clinical diagnosis of parkinsonian syndromes like Parkinson’s disease, corticobasal degeneration and progressive supranuclear palsy is hampered by overlapping symptomatology and lack of biomarkers for diagnosis, and definitive diagnosis is only possible post-mortem. Since impaired protein degradation plays an important role in many neurodegenerative disorders, we hypothesized that levels and profiles of lysosomal network proteins in cerebrospinal fluid could be changed in these parkinsonian syndromes.Methods: Cerebrospinal fluid samples were collected from Parkinson’s disease patients (n=18), clinically diagnosed 4-repeat tauopathy patients, corticobasal syndrome (n=6) and progressive supranuclear palsy (n=5), pathologically diagnosed progressive supranuclear palsy (n=8) and corticobasal degeneration patients (n=7). Each patient set was compared to its appropriate control group consisting of the same number of age and gender matched individuals. Lysosomal network protein levels were detected via Western blotting.Results: Lysosomal network proteins have markedly different cerebrospinal fluid protein levels and profiles in Parkinson’s disease, corticobasal degeneration and progressive supranuclear palsy. Lysosomal-associated membrane proteins 1 and 2 were significantly decreased in Parkinson´s disease; early endosomal antigen 1 was decreased and lysozyme increased in progressive supranuclear palsy; and lysosomal-associated membrane proteins 1 and 2, microtubule-associated protein 1 light chain 3 and lysozyme were increased in corticobasal degeneration.Conclusions: Lysosomal network proteins hold promise of being interesting novel candidates for biomarker studies and for elucidating disease mechanisms of Parkinson’s disease, corticobasal degeneration and progressive supranuclear palsy, but further validation studies will be needed to assess the specificity and the predictive value of these proteins in CSF.
  •  
4.
  • Bridel, Claire, et al. (author)
  • Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology : A Systematic Review and Meta-analysis
  • 2019
  • In: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157. ; 76:9, s. 1035-1048
  • Research review (peer-reviewed)abstract
    • Importance  Neurofilament light protein (NfL) is elevated in cerebrospinal fluid (CSF) of a number of neurological conditions compared with healthy controls (HC) and is a candidate biomarker for neuroaxonal damage. The influence of age and sex is largely unknown, and levels across neurological disorders have not been compared systematically to date.Objectives  To assess the associations of age, sex, and diagnosis with NfL in CSF (cNfL) and to evaluate its potential in discriminating clinically similar conditions.Data Sources  PubMed was searched for studies published between January 1, 2006, and January 1, 2016, reporting cNfL levels (using the search terms neurofilament light and cerebrospinal fluid) in neurological or psychiatric conditions and/or in HC.Study Selection  Studies reporting NfL levels measured in lumbar CSF using a commercially available immunoassay, as well as age and sex.Data Extraction and Synthesis  Individual-level data were requested from study authors. Generalized linear mixed-effects models were used to estimate the fixed effects of age, sex, and diagnosis on log-transformed NfL levels, with cohort of origin modeled as a random intercept.Main Outcome and Measure  The cNfL levels adjusted for age and sex across diagnoses.Results  Data were collected for 10 059 individuals (mean [SD] age, 59.7 [18.8] years; 54.1% female). Thirty-five diagnoses were identified, including inflammatory diseases of the central nervous system (n = 2795), dementias and predementia stages (n = 4284), parkinsonian disorders (n = 984), and HC (n = 1332). The cNfL was elevated compared with HC in a majority of neurological conditions studied. Highest levels were observed in cognitively impaired HIV-positive individuals (iHIV), amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and Huntington disease. In 33.3% of diagnoses, including HC, multiple sclerosis, Alzheimer disease (AD), and Parkinson disease (PD), cNfL was higher in men than women. The cNfL increased with age in HC and a majority of neurological conditions, although the association was strongest in HC. The cNfL overlapped in most clinically similar diagnoses except for FTD and iHIV, which segregated from other dementias, and PD, which segregated from atypical parkinsonian syndromes.Conclusions and Relevance  These data support the use of cNfL as a biomarker of neuroaxonal damage and indicate that age-specific and sex-specific (and in some cases disease-specific) reference values may be needed. The cNfL has potential to assist the differentiation of FTD from AD and PD from atypical parkinsonian syndromes.
  •  
5.
  • Höglinger, Günter U, et al. (author)
  • Clinical diagnosis of progressive supranuclear palsy : The movement disorder society criteria
  • 2017
  • In: Movement Disorders. - : Wiley. - 0885-3185. ; 32:6, s. 853-864
  • Journal article (peer-reviewed)abstract
    • Background: PSP is a neuropathologically defined disease entity. Clinical diagnostic criteria, published in 1996 by the National Institute of Neurological Disorders and Stroke/Society for PSP, have excellent specificity, but their sensitivity is limited for variant PSP syndromes with presentations other than Richardson's syndrome. Objective: We aimed to provide an evidence- and consensus-based revision of the clinical diagnostic criteria for PSP. Methods: We searched the PubMed, Cochrane, Medline, and PSYCInfo databases for articles published in English since 1996, using postmortem diagnosis or highly specific clinical criteria as the diagnostic standard. Second, we generated retrospective standardized clinical data from patients with autopsy-confirmed PSP and control diseases. On this basis, diagnostic criteria were drafted, optimized in two modified Delphi evaluations, submitted to structured discussions with consensus procedures during a 2-day meeting, and refined in three further Delphi rounds. Results: Defined clinical, imaging, laboratory, and genetic findings serve as mandatory basic features, mandatory exclusion criteria, or context-dependent exclusion criteria. We identified four functional domains (ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction) as clinical predictors of PSP. Within each of these domains, we propose three clinical features that contribute different levels of diagnostic certainty. Specific combinations of these features define the diagnostic criteria, stratified by three degrees of diagnostic certainty (probable PSP, possible PSP, and suggestive of PSP). Clinical clues and imaging findings represent supportive features. Conclusions: Here, we present new criteria aimed to optimize early, sensitive, and specific clinical diagnosis of PSP on the basis of currently available evidence.
  •  
6.
  • Mattsson-Carlgren, Niklas, et al. (author)
  • Cerebrospinal fluid biomarkers in autopsy-confirmed Alzheimer disease and frontotemporal lobar degeneration
  • 2022
  • In: Neurology. - 0028-3878. ; 98:11, s. 1137-1150
  • Journal article (peer-reviewed)abstract
    • Background and Objectives To determine how fully automated Elecsys CSF immunoassays for β-amyloid (Aβ) and tau biomarkers and an ultrasensitive Simoa assay for neurofilament light chain (NFL) correlate with neuropathologic changes of Alzheimer disease (AD) and frontotemporal lobar degeneration (FTLD). Methods We studied 101 patients with antemortem CSF and neuropathology data. CSF samples were collected a mean of 2.9 years before death (range 0.2–7.5 years). CSF was analyzed for Aβ40, Aβ42, total tau (T-tau), tau phosphorylated at amino acid residue 181 (P-tau), P-tau/Aβ42 and Aβ42/Aβ40 ratios, and NFL. Neuropathology measures included Thal phases, Braak stages, Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) scores, AD neuropathologic change (ADNC), and primary and contributory pathologic diagnoses. Associations between CSF biomarkers and neuropathologic features were tested in regression models adjusted for age, sex, and time from sampling to death. Results CSF biomarkers were associated with neuropathologic measures of Aβ (Thal, CERAD score), tau (Braak stage), and overall ADNC. The CSF P-tau/Aβ42 and Aβ42/Aβ40 ratios had high sensitivity, specificity, and overall diagnostic performance for intermediate-high ADNC (area under the curve range 0.95–0.96). Distinct biomarker patterns were seen in different FTLD subtypes, with increased NFL and reduced P-tau/T-tau in FTLD–TAR DNA-binding protein 43 and reduced T-tau in progressive supranuclear palsy compared to other FTLD variants. Discussion CSF biomarkers, including P-tau, T-tau, Aβ42, Aβ40, and NFL, support in vivo identification of AD neuropathology and correlate with FTLD neuropathology.
  •  
7.
  • Meeter, Lieke H.H., et al. (author)
  • Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia
  • 2019
  • In: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 90:9, s. 997-1004
  • Journal article (peer-reviewed)abstract
    • Background: Semantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NfL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NfL in SD. Methods: This large retrospective multicentre study compared cross-sectional CSF NfL levels of 162 patients with SD with 65 controls. CSF NfL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset). Results: CSF NfL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628-3593) than in controls (577 (446-766), p<0.001). Higher CSF NfL levels were moderately associated with naming impairment as measured by the Boston Naming Test (rs=-0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (rs=-0.31, p=0.004). However, cross-sectional CSF NfL levels were not associated with progression of grey matter atrophy and did not predict survival. Conclusion: CSF NfL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities.
  •  
8.
  • Ossenkoppele, Rik, et al. (author)
  • Accuracy of Tau Positron Emission Tomography as a Prognostic Marker in Preclinical and Prodromal Alzheimer Disease : A Head-to-Head Comparison against Amyloid Positron Emission Tomography and Magnetic Resonance Imaging
  • 2021
  • In: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:8, s. 961-971
  • Journal article (peer-reviewed)abstract
    • Importance: Tau positron emission tomography (PET) tracers have proven useful for the differential diagnosis of dementia, but their utility for predicting cognitive change is unclear. Objective: To examine the prognostic accuracy of baseline fluorine 18 (18F)-flortaucipir and [18F]RO948 (tau) PET in individuals across the Alzheimer disease (AD) clinical spectrum and to perform a head-to-head comparison against established magnetic resonance imaging (MRI) and amyloid PET markers. Design, Setting, and Participants: This prognostic study collected data from 8 cohorts in South Korea, Sweden, and the US from June 1, 2014, to February 28, 2021, with a mean (SD) follow-up of 1.9 (0.8) years. A total of 1431 participants were recruited from memory clinics, clinical trials, or cohort studies; 673 were cognitively unimpaired (CU group; 253 [37.6%] positive for amyloid-β [Aβ]), 443 had mild cognitive impairment (MCI group; 271 [61.2%] positive for Aβ), and 315 had a clinical diagnosis of AD dementia (315 [100%] positive for Aβ). Exposures: [18F]Flortaucipir PET in the discovery cohort (n = 1135) or [18F]RO948 PET in the replication cohort (n = 296), T1-weighted MRI (n = 1431), and amyloid PET (n = 1329) at baseline and repeated Mini-Mental State Examination (MMSE) evaluation. Main Outcomes and Measures: Baseline [18F]flortaucipir/[18F]RO948 PET retention within a temporal region of interest, MRI-based AD-signature cortical thickness, and amyloid PET Centiloids were used to predict changes in MMSE using linear mixed-effects models adjusted for age, sex, education, and cohort. Mediation/interaction analyses tested whether associations between baseline tau PET and cognitive change were mediated by baseline MRI measures and whether age, sex, and APOE genotype modified these associations. Results: Among 1431 participants, the mean (SD) age was 71.2 (8.8) years; 751 (52.5%) were male. Findings for [18F]flortaucipir PET predicted longitudinal changes in MMSE, and effect sizes were stronger than for AD-signature cortical thickness and amyloid PET across all participants (R2, 0.35 [tau PET] vs 0.24 [MRI] vs 0.17 [amyloid PET]; P <.001, bootstrapped for difference) in the Aβ-positive MCI group (R2, 0.25 [tau PET] vs 0.15 [MRI] vs 0.07 [amyloid PET]; P <.001, bootstrapped for difference) and in the Aβ-positive CU group (R2, 0.16 [tau PET] vs 0.08 [MRI] vs 0.08 [amyloid PET]; P <.001, bootstrapped for difference). These findings were replicated in the [18F]RO948 PET cohort. MRI mediated the association between [18F]flortaucipir PET and MMSE in the groups with AD dementia (33.4% [95% CI, 15.5%-60.0%] of the total effect) and Aβ-positive MCI (13.6% [95% CI, 0.0%-28.0%] of the total effect), but not the Aβ-positive CU group (3.7% [95% CI, -17.5% to 39.0%]; P =.71). Age (t = -2.28; P =.02), but not sex (t = 0.92; P =.36) or APOE genotype (t = 1.06; P =.29) modified the association between baseline [18F]flortaucipir PET and cognitive change, such that older individuals showed faster cognitive decline at similar tau PET levels. Conclusions and Relevance: The findings of this prognostic study suggest that tau PET is a promising tool for predicting cognitive change that is superior to amyloid PET and MRI and may support the prognostic process in preclinical and prodromal stages of AD.
  •  
9.
  • Ossenkoppele, Rik, et al. (author)
  • Assessment of Demographic, Genetic, and Imaging Variables Associated with Brain Resilience and Cognitive Resilience to Pathological Tau in Patients with Alzheimer Disease
  • 2020
  • In: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 77:5, s. 632-642
  • Journal article (peer-reviewed)abstract
    • Importance: Better understanding is needed of the degree to which individuals tolerate Alzheimer disease (AD)-like pathological tau with respect to brain structure (brain resilience) and cognition (cognitive resilience). Objective: To examine the demographic (age, sex, and educational level), genetic (APOE-ϵ4 status), and neuroimaging (white matter hyperintensities and cortical thickness) factors associated with interindividual differences in brain and cognitive resilience to tau positron emission tomography (PET) load and to changes in global cognition over time. Design, Setting, an Participants: In this cross-sectional, longitudinal study, tau PET was performed from June 1, 2014, to November 30, 2017, and global cognition monitored for a mean [SD] interval of 2.0 [1.8] years at 3 dementia centers in South Korea, Sweden, and the United States. The study included amyloid-β-positive participants with mild cognitive impairment or AD dementia. Data analysis was performed from October 26, 2018, to December 11, 2019. Exposures: Standard dementia screening, cognitive testing, brain magnetic resonance imaging, amyloid-β PET and cerebrospinal fluid analysis, and flortaucipir (tau) labeled with fluor-18 (18F) PET. Main Outcomes and Measures: Separate linear regression models were performed between whole cortex [18F]flortaucipir uptake and cortical thickness, and standardized residuals were used to obtain a measure of brain resilience. The same procedure was performed for whole cortex [18F]flortaucipir uptake vs Mini-Mental State Examination (MMSE) as a measure of cognitive resilience. Bivariate and multivariable linear regression models were conducted with age, sex, educational level, APOE-ϵ4 status, white matter hyperintensity volumes, and cortical thickness as independent variables and brain and cognitive resilience measures as dependent variables. Linear mixed models were performed to examine whether changes in MMSE scores over time differed as a function of a combined brain and cognitive resilience variable. Results: A total of 260 participants (145 [55.8%] female; mean [SD] age, 69.2 [9.5] years; mean [SD] MMSE score, 21.9 [5.5]) were included in the study. In multivariable models, women (standardized β =-0.15, P =.02) and young patients (standardized β =-0.20, P =.006) had greater brain resilience to pathological tau. Higher educational level (standardized β = 0.23, P <.001) and global cortical thickness (standardized β = 0.23, P <.001) were associated with greater cognitive resilience to pathological tau. Linear mixed models indicated a significant interaction of brain resilience × cognitive resilience × time on MMSE (β [SE] =-0.235 [0.111], P =.03), with steepest slopes for individuals with both low brain and cognitive resilience. Conclusions and Relevance: Results of this study suggest that women and young patients with AD have relative preservation of brain structure when exposed to neocortical pathological tau. Interindividual differences in resilience to pathological tau may be important to disease progression because participants with both low brain and cognitive resilience had the most rapid cognitive decline over time.
  •  
10.
  • Ossenkoppele, Rik, et al. (author)
  • Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer's disease
  • 2020
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 16:2, s. 335-344
  • Journal article (peer-reviewed)abstract
    • Introduction: Differential patterns of brain atrophy on structural magnetic resonance imaging (MRI) revealed four reproducible subtypes of Alzheimer's disease (AD): (1) “typical”, (2) “limbic-predominant”, (3) “hippocampal-sparing”, and (4) “mild atrophy”. We examined the neurobiological characteristics and clinical progression of these atrophy-defined subtypes. Methods: The four subtypes were replicated using a clustering method on MRI data in 260 amyloid-β–positive patients with mild cognitive impairment or AD dementia, and we subsequently tested whether the subtypes differed on [18F]flortaucipir (tau) positron emission tomography, white matter hyperintensity burden, and rate of global cognitive decline. Results: Voxel-wise and region-of-interest analyses revealed the greatest neocortical tau load in hippocampal-sparing (frontoparietal-predominant) and typical (temporal-predominant) patients, while limbic-predominant patients showed particularly high entorhinal tau. Typical patients with AD had the most pronounced white matter hyperintensity load, and hippocampal-sparing patients showed the most rapid global cognitive decline. Discussion: Our data suggest that structural MRI can be used to identify biologically and clinically meaningful subtypes of AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view