SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bråbäck Lennart) ;pers:(Holm Mathias 1969)"

Sökning: WFRF:(Bråbäck Lennart) > Holm Mathias 1969

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Accordini, S., et al. (författare)
  • A three-generation study on the association of tobacco smoking with asthma
  • 2018
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 47:4, s. 1106-1117
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mothers' smoking during pregnancy increases asthma risk in their offspring. There is some evidence that grandmothers' smoking may have a similar effect, and biological plausibility that fathers' smoking during adolescence may influence offspring's health through transmittable epigenetic changes in sperm precursor cells. We evaluated the three-generation associations of tobacco smoking with asthma. Methods: Between 2010 and 2013, at the European Community Respiratory Health Survey III clinical interview, 2233 mothers and 1964 fathers from 26 centres reported whether their offspring (aged <= 51 years) had ever had asthma and whether it had coexisted with nasal allergies or not. Mothers and fathers also provided information on their parents' (grandparents) and their own asthma, education and smoking history. Multilevel mediation models within a multicentre three-generation framework were fitted separately within the maternal (4666 offspring) and paternal (4192 offspring) lines. Results: Fathers' smoking before they were 15 [relative risk ratio (RRR) = 1.43, 95% confidence interval (CI): 1.01-2.01] and mothers' smoking during pregnancy (RRR = 1.27, 95% CI: 1.01-1.59) were associated with asthma without nasal allergies in their offspring. Grandmothers' smoking during pregnancy was associated with asthma in their daughters [odds ratio (OR) = 1.55, 95% CI: 1.17-2.06] and with asthma with nasal allergies in their grandchildren within the maternal line (RRR = 1.25, 95% CI: 1.02-1.55). Conclusions: Fathers' smoking during early adolescence and grandmothers' and mothers' smoking during pregnancy may independently increase asthma risk in offspring. Thus, risk factors for asthma should be sought in both parents and before conception.
  •  
2.
  • Accordini, S., et al. (författare)
  • Prenatal and prepubertal exposures to tobacco smoke in men may cause lower lung function in future offspring: a three-generation study using a causal modelling approach
  • 2021
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 58:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanistic research suggests that lifestyle and environmental factors impact respiratory health across generations by epigenetic changes transmitted through male germ cells. Evidence from studies on humans is very limited. We investigated multigeneration causal associations to estimate the causal effects of tobacco smoking on lung function within the paternal line. We analysed data from 383 adult offspring (age 18-47 years; 52.0% female) and their 274 fathers, who had participated in the European Community Respiratory Health Survey (ECRHS)/Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) generation study and had provided valid measures of pre-bronchodilator lung function. Two counterfactual-based, multilevel mediation models were developed with: paternal grandmothers' smoking in pregnancy and fathers' smoking initiation in prepuberty as exposures; fathers' forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), or FEV1/FVC z-scores as potential mediators (proxies of unobserved biological mechanisms that are true mediators); and offspring's FEV1 and FVC, or FEV1/FVC z-scores as outcomes. All effects were summarised as differences (Delta) in expected z-scores related to fathers' and grandmothers' smoking history. Fathers' smoking initiation in prepuberty had a negative direct effect on both offspring's FEV1 (Delta z-score -0.36, 95% CI -0.63--0.10) and FVC (-0.50, 95% CI -0.80--0.20) compared with fathers' never smoking. Paternal grandmothers' smoking in pregnancy had a negative direct effect on fathers' FEV1/FVC -0.57, 95% CI -1.09--0.05) and a negative indirect effect on offspring's FEV1/FVC (-0.12, 95% CI -0.21--0.03) compared with grandmothers' not smoking before fathers' birth nor during fathers' childhood. Fathers' smoking in prepuberty and paternal grandmothers' smoking in pregnancy may cause lower lung function in offspring. Our results support the concept that lifestyle-related exposures during these susceptibility periods influence the health of future generations.
  •  
3.
  • Kuiper, I. N., et al. (författare)
  • Agreement in reporting of asthma by parents or offspring - the RHINESSA generation study
  • 2018
  • Ingår i: Bmc Pulmonary Medicine. - : Springer Science and Business Media LLC. - 1471-2466. ; 18:122
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Self-report questionnaires are commonly used in epidemiology, but may be susceptible to misclassification, especially if answers are given on behalf of others, e.g. children or parents. The aim was to determine agreement and analyse predictors of disagreement in parents' reports of offspring asthma, and in offspring reports of parents' asthma. Methods: In the Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) generation study, 6752 offspring (age range 18-51 years) and their parents (age range 39-66 years) reported their own and each other's asthma status. Agreement between asthma reports from offspring and parents was determined by calculating sensitivity, specificity, positive and negative predictive value and Cohen's kappa. The participants' own answers regarding themselves were defined as the gold standard. To investigate predictors for disagreement logistic regression analyses were performed to obtain odds ratios (OR) with 95% confidence intervals (CI) for sex, smoking status, education, comorbidity and severity of asthma. Results: Agreement was good for parental report of offspring early onset asthma (< 10 years, Cohen's kappa 0.72) and moderate for offspring later onset asthma (Cohen's kappa 0.46). Specificity was 0.99 for both, and sensitivity was 0.68 and 0.36, respectively. For offspring report of maternal and paternal asthma the agreement was good (Cohen's kappa 0.69 and 0.68), specificity was 0.96 and 0.97, and sensitivity was 0.72 and 0.68, respectively. The positive predictive value (PPV) was lowest for offspring report of maternal asthma (0.75), and highest for parents' report of early onset asthma in the offspring (0.83). The negative predictive value (NPV) was high for all four groups (0.94-0.97). In multivariate analyses current smokers (OR = 1.46 [95% CI 1.05, 2.02]) and fathers (OR = 1.31 [95% CI 1. 08, 1.59]) were more likely to report offspring asthma incorrectly. Offspring wheeze was associated with reporting parental asthma incorrectly (OR = 1.60 [95% CI 1.21, 2.11]), both under- and over reporting. Conclusions: Asthma reports across generations show moderate to good agreement, making information from other generations a useful tool in the absence of direct reports.
  •  
4.
  • Kuiper, I. N., et al. (författare)
  • Associations of Preconception Exposure to Air Pollution and Greenness with Offspring Asthma and Hay Fever
  • 2020
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1660-4601 .- 1661-7827. ; 17:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated if greenness and air pollution exposure in parents' childhood affect offspring asthma and hay fever, and if effects were mediated through parental asthma, pregnancy greenness/pollution exposure, and offspring exposure. We analysed 1106 parents with 1949 offspring (mean age 35 and 6) from the Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) generation study. Mean particulate matter (PM(2.5)and PM10), nitrogen dioxide (NO2), black carbon (BC), ozone (O-3) (mu g/m(3)) and greenness (normalized difference vegetation index (NDVI)) were calculated for parents 0-18 years old and offspring 0-10 years old, and were categorised in tertiles. We performed logistic regression and mediation analyses for two-pollutant models (clustered by family and centre, stratified by parental lines, and adjusted for grandparental asthma and education). Maternal medium PM(2.5)and PM(10)exposure was associated with higher offspring asthma risk (odds ratio (OR) 2.23, 95%CI 1.32-3.78, OR 2.27, 95%CI 1.36-3.80), and paternal high BC exposure with lower asthma risk (OR 0.31, 95%CI 0.11-0.87). Hay fever risk increased for offspring of fathers with medium O(3)exposure (OR 4.15, 95%CI 1.28-13.50) and mothers with high PM(10)exposure (OR 2.66, 95%CI 1.19-5.91). The effect of maternal PM(10)exposure on offspring asthma was direct, while for hay fever, it was mediated through exposures in pregnancy and offspring's own exposures. Paternal O(3)exposure had a direct effect on offspring hay fever. To conclude, parental exposure to air pollution appears to influence the risk of asthma and allergies in future offspring.
  •  
5.
  • Lonnebotn, M., et al. (författare)
  • Parental Prepuberty Overweight and Offspring Lung Function
  • 2022
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 14:7
  • Tidskriftsartikel (refereegranskat)abstract
    • In a recent study we found that fathers' but not mothers' onset of overweight in puberty was associated with asthma in adult offspring. The potential impact on offspring's adult lung function, a key marker of general and respiratory health, has not been studied. We investigated the potential causal effects of parents' overweight on adult offspring's lung function within the paternal and maternal lines. We included 929 offspring (aged 18-54, 54% daughters) of 308 fathers and 388 mothers (aged 40-66). Counterfactual-based multi-group mediation analyses by offspring's sex (potential moderator) were used, with offspring's prepubertal overweight and/or adult height as potential mediators. Unknown confounding was addressed by simulation analyses. Fathers' overweight before puberty had a negative indirect effect, mediated through sons' height, on sons' forced expiratory volume in one second (FEV1) (beta (95% CI): -144 (-272, -23) mL) and forced vital capacity (FVC) (beta (95% CI): -210 (-380, -34) mL), and a negative direct effect on sons' FVC (beta (95% CI): -262 (-501, -9) mL); statistically significant effects on FEV1/FVC were not observed. Mothers' overweight before puberty had neither direct nor indirect effects on offspring's lung function. Fathers' overweight starting before puberty appears to cause lower FEV1 and FVC in their future sons. The effects were partly mediated through sons' adult height but not through sons' prepubertal overweight.
  •  
6.
  • Nordeide Kuiper, I., et al. (författare)
  • Lifelong exposure to air pollution and greenness in relation to asthma, rhinitis and lung function in adulthood
  • 2021
  • Ingår i: Environmental International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To investigate if air pollution and greenness exposure from birth till adulthood affects adult asthma, rhinitis and lung function. Methods: We analysed data from 3428 participants (mean age 28) in the RHINESSA study in Norway and Sweden. Individual mean annual residential exposures to nitrogen dioxide (NO2), particulate matter (PM10 and PM2.5), black carbon (BC), ozone (O3) and greenness (normalized difference vegetation index (NDVI)) were averaged across susceptibility windows (0–10 years, 10–18 years, lifetime, adulthood (year before study participation)) and analysed in relation to physician diagnosed asthma (ever/allergic/non-allergic), asthma attack last 12 months, current rhinitis and low lung function (lower limit of normal (LLN), z-scores of forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and FEV1/FVC below 1.64). We performed logistic regression for asthma attack, rhinitis and LLN lung function (clustered with family and study centre), and conditional logistic regression with a matched case-control design for ever/allergic/non-allergic asthma. Multivariable models were adjusted for parental asthma and education. Results: Childhood, adolescence and adult exposure to NO2, PM10 and O3 were associated with an increased risk of asthma attacks (ORs between 1.29 and 2.25), but not with physician diagnosed asthma. For rhinitis, adulthood exposures seemed to be most important. Childhood and adolescence exposures to PM2.5 and O3 were associated with lower lung function, in particular FEV1 (range ORs 2.65 to 4.21). No associations between NDVI and asthma or rhinitis were revealed, but increased NDVI was associated with lower FEV1 and FVC in all susceptibility windows (range ORs 1.39 to 1.74). Conclusions: Air pollution exposures in childhood, adolescence and adulthood were associated with increased risk of asthma attacks, rhinitis and low lung function in adulthood. Greenness was not associated with asthma or rhinitis, but was a risk factor for low lung function. © 2020 The Authors
  •  
7.
  • Pape, Kathrine, et al. (författare)
  • Agreement of offspring-reported parental smoking status : the RHINESSA generation study
  • 2019
  • Ingår i: BMC Public Health. - : BMC. - 1471-2458. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: With increasing interest in exposure effects across generations, it is crucial to assess the validity of information given on behalf of others.Aims: To compare adult's report of their parent’s smoking status against parent's own report and examine predictors for discrepant answers.Methods: We studied 7185 offspring (18-51 years) and one of their parents, n = 5307 (27-67 years) participating in the Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) generation study. Information about parent's smoking status during offspring's childhood and mother's smoking status during pregnancy was obtained by questionnaires from parents and their offspring. We calculated sensitivity, specificity and Cohen's Kappa [κ] for agreement using parent's own report as the gold standard. We performed logistic regression to examine if offspring's sex, age, educational level, asthma status, own smoking status or parental status, as well as the parent's sex and amount of smoking during childhood predicted disagreement.Results: The sensitivity for offspring's correct report of parent's smoking status during childhood (0-10 years) was 0.82 (95% CI 0.81–0.84), specificity was 0.95 (95% CI 0.95–0.96) and a good agreement was observed, κ = 0.79 (95% CI 0.78–0.80). Offspring's report of mothers' smoking status during pregnancy showed a lower sensitivity, 0.66 (95% CI 0.60–0.71), a slightly lower specificity, 0.92 (95% CI 0.90–0.95) and a good agreement, κ = 0.61 (95% CI 0.55–0.67). In multivariate logistic regression analysis, offspring not having children was a predictor for discrepant answers (odds ratio [OR] 2.11 [95% CI 1.21–3.69]). Low amount of parents' tobacco consumption, < 10 cigarettes/day (OR 2.72 [95% CI 1.71–4.31]) also predicted disagreement compared to ≥10 cigarettes per day, and so did offspring's reports of fathers' smoking status (OR 1.73 [95% CI 1.09–2.74]) compared to mothers' smoking status. Offspring's sex, asthma status, educational level, smoking status or age was not related to discrepant answers.Conclusions: Adults report their parent's smoking status during their childhood, as well as their mothers' smoking status when pregnant with them, quite accurately. In the absence of parents' direct report, offspring's reports could be valuable.
  •  
8.
  • Svanes, C., et al. (författare)
  • Cohort profile: the multigeneration Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) cohort
  • 2022
  • Ingår i: Bmj Open. - : BMJ. - 2044-6055. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) cohort was established to (1) investigate how exposures before conception and in previous generations influence health and disease, particularly allergies and respiratory health, (2) identify susceptible time windows and (3) explore underlying mechanisms. The ultimate aim is to facilitate efficient intervention strategies targeting multiple generations. Participants RHINESSA includes study participants of multiple generations from ten study centres in Norway (1), Denmark (1), Sweden (3), Iceland (1), Estonia (1), Spain (2) and Australia (1). The RHINESSA core cohort, adult offspring generation 3 (G3), was first investigated in 2014-17 in a questionnaire study (N=8818, age 18-53 years) and a clinical study (subsample, n=1405). Their G2 parents participated in the population-based cohorts, European Community Respiratory Heath Survey and Respiratory Health In Northern Europe, followed since the early 1990s when they were 20-44 years old, at 8-10 years intervals. Study protocols are harmonised across generations. Findings to date Collected data include spirometry, skin prick tests, exhaled nitric oxide, anthropometrics, bioimpedance, blood pressure; questionnaire/interview data on respiratory/general/reproductive health, indoor/outdoor environment, smoking, occupation, general characteristics and lifestyle; biobanked blood, urine, gingival fluid, skin swabs; measured specific and total IgE, DNA methylation, sex hormones and oral microbiome. Research results suggest that parental environment years before conception, in particular, father's exposures such as smoking and overweight, may be of key importance for asthma and lung function, and that there is an important susceptibility window in male prepuberty. Statistical analyses developed to approach causal inference suggest that these associations may be causal. DNA methylation studies suggest a mechanism for transfer of father's exposures to offspring health and disease through impact on offspring DNA methylation. Future plans Follow-up is planned at 5-8 years intervals, first in 2021-2023. Linkage with health registries contributes to follow-up of the cohort.
  •  
9.
  • Svanes, C., et al. (författare)
  • Father's environment before conception and asthma risk in his children: a multi-generation analysis of the Respiratory Health In Northern Europe study
  • 2017
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 46:1, s. 235-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Whereas it is generally accepted that maternal environment plays a key role in child health, emerging evidence suggests that paternal environment before conception also impacts child health. We aimed to investigate the association between children's asthma risk and parental smoking and welding exposures prior to conception. Methods: In a longitudinal, multi-country study, parents of 24 168 offspring aged 2-51 years provided information on their life-course smoking habits, occupational exposure to welding and metal fumes, and offspring's asthma before/after age 10 years and hay fever. Logistic regressions investigated the relevant associations controlled for age, study centre, parental characteristics (age, asthma, education) and clustering by family. Results: Non-allergic early-onset asthma (asthma without hay fever, present in 5.8%) was more common in the offspring with fathers who smoked before conception {odds ratio [OR] = 1.68 [95% confidence interval (CI) = 1.18-2.41]}, whereas mothers' smoking before conception did not predict offspring asthma. The risk was highest if father started smoking before age 15 years [3.24 (1.67-6.27)], even if he stopped more than 5 years before conception [2.68 (1.17-6.13)]. Fathers' pre-conception welding was independently associated with non-allergic asthma in his offspring [1.80 (1.29-2.50)]. There was no effect if the father started welding or smoking after birth. The associations were consistent across countries. Conclusions: Environmental exposures in young men appear to influence the respiratory health of their offspring born many years later. Influences during susceptible stages of spermatocyte development might be important and needs further investigation in humans. We hypothesize that protecting young men from harmful exposures may lead to improved respiratory health in future generations.
  •  
10.
  • Timm, S., et al. (författare)
  • Does parental farm upbringing influence the risk of asthma in offspring? A three-generation study
  • 2020
  • Ingår i: International journal of epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 49:6, s. 1874-1882
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A farm upbringing has been associated with lower risk of asthma and methylation of asthma-related genes. As such, a farm upbringing has the potential to transfer asthma risk across generations, but this has never been investigated. We aimed to study the generational effects from a parental farm upbringing on offspring asthma. Methods: Our study involved three generations: 5759 participants from the European Community Respiratory Health Survey (ECRHS) study (born 1945-1971, denoted G1), their 9991 parents (GO) and their 8260 offspring (G2) participating in RHINESSA (Respiratory Health In Northern Europe, Spain and Australia). Questionnaire data were collected on GO and G1 from G1 in 2010 and on G2 from themselves in 2013. The parental/grandparental place of upbringing was categorized: (i) both parents from farm; (ii) mother from farm, father from village/city; (iii) father from farm, mother from village/city; (iv) both parents from village or one parent from village and one from city; (v) both parents from city (reference group). Grandparental upbringing was equivalently categorized. Offspring asthma was self-reported and data were analysed using Cox-regression models with G2 age as the time scale. Results: A parental farm upbringing was not associated with offspring asthma when compared with city upbringing [hazard ratio (HR) 1.12, 95% confidence interval (CI) 0.74-1.69]. Findings remained similar when stratified by offspring upbringing and asthma phenotypes. Quantitative bias analyses showed similar estimates for alternative data sources. A grandparental farm upbringing was not associated with offspring asthma in either the maternal (HR 1.05, 95% CI 0.67-1.65) or paternal line (HR 1.02, 95% CI 0.62-1.68). Conclusions: This multigenerational analysis suggests no evidence of an association between parental/grandparental farm upbringing and offspring asthma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy