SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brøns Charlotte) "

Sökning: WFRF:(Brøns Charlotte)

  • Resultat 1-10 av 16
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Davegårdh, Cajsa, et al. (författare)
  • VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39+/− mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D. 
  •  
2.
  • Gillberg, Linn, et al. (författare)
  • Adipose tissue transcriptomics and epigenomics in low birthweight men and controls : role of high-fat overfeeding
  • 2016
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 59:4, s. 799-812
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Individuals who had a low birthweight (LBW) are at an increased risk of insulin resistance and type 2 diabetes when exposed to high-fat overfeeding (HFO). We studied genome-wide mRNA expression and DNA methylation in subcutaneous adipose tissue (SAT) after 5 days of HFO and after a control diet in 40 young men, of whom 16 had LBW. Methods mRNA expression was analysed using Affymetrix Human Gene 1.0 ST arrays and DNA methylation using Illumina 450K BeadChip arrays. Results We found differential DNA methylation at 53 sites in SAT from LBW vs normal birthweight (NBW) men (false discovery rate < 5%), including sites in the FADS2 and CPLX1 genes previously associated with type 2 diabetes. When we used reference-free cell mixture adjustments to potentially adjust for cell composition, 4,323 sites had differential methylation in LBW vs NBW men. However, no differences in SAT gene expression levels were identified between LBW and NBW men. In the combined group of all 40 participants, 3,276 genes (16.5%) were differentially expressed in SAT after HFO (false discovery rate < 5%) and there was no difference between LBW men and controls. The most strongly upregulated genes were ELOVL6, FADS2 and NNAT; in contrast, INSR, IRS2 and the SLC27A2 fatty acid transporter showed decreased expression after HFO. Interestingly, SLC27A2 expression correlated negatively with diabetes- and obesity-related traits in a replication cohort of 142 individuals. DNA methylation at 652 CpG sites (including in CDK5, IGFBP5 and SLC2A4) was altered in SAT after overfeeding in this and in another cohort. Conclusions/interpretation Young men who had a LBW exhibit epigenetic alterations in their adipose tissue that potentially influence insulin resistance and risk of type 2 diabetes. Short-term overfeeding influences gene transcription and, to some extent, DNA methylation in adipose tissue; there was no major difference in this response between LBW and control participants.
  •  
3.
  • Rönn, Tina, et al. (författare)
  • Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood.
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 24:13, s. 3792-3813
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed DNA methylation of ∼480,000 sites in human adipose tissue from 96 males and 94 females, and related methylation to age, BMI and HbA1c. We also compared epigenetic signatures in adipose tissue and blood. Age was significantly associated with both altered DNA methylation and expression of 1,050 genes (e.g. FHL2, NOX4 and PLG). Interestingly, many reported epigenetic biomarkers of ageing in blood, including ELOVL2, FHL2, KLF14 and GLRA1, also showed significant correlations between adipose tissue DNA methylation and age in our study. The most significant association between age and adipose tissue DNA methylation was found upstream of ELOVL2. We identified 2,825 genes (e.g. FTO, ITIH5, CCL18, MTCH2, IRS1 and SPP1) where both DNA methylation and expression correlated with BMI. Methylation at previously reported HIF3A sites correlated significantly with BMI in females only. HbA1c (range 28-46 mmol/mol) correlated significantly with methylation of 711 sites, annotated to e.g. RAB37, TICAM1 and HLA-DPB1. Pathway analyses demonstrated that methylation levels associated with age and BMI are overrepresented among genes involved in cancer, type 2 diabetes and cardiovascular disease. Our results highlight the impact of age, BMI and HbA1c on epigenetic variation of candidate genes for metabolic diseases and cancer in human adipose tissue. Importantly, we demonstrate that epigenetic biomarkers in blood can mirror age-related epigenetic signatures in target tissues for metabolic diseases such as adipose tissue.
  •  
4.
  • Broholm, Christa, et al. (författare)
  • Epigenome- and Transcriptome-wide Changes in Muscle Stem Cells from Low Birth Weight Men
  • 2020
  • Ingår i: Endocrine Research. - : Taylor & Francis. - 0743-5800. ; 45:1, s. 58-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Being born with low birth weight (LBW) is a risk factor for muscle insulin resistance and type 2 diabetes (T2D), which may be mediated by epigenetic mechanisms programmed by the intrauterine environment. Epigenetic mechanisms exert their prime effects in developing cells. We hypothesized that muscle insulin resistance in LBW subjects may be due to early differential epigenomic and transcriptomic alterations in their immature muscle progenitor cells. Results: Muscle progenitor cells were obtained from 23 healthy young adult men born at term with LBW, and 15 BMI-matched normal birth weight (NBW) controls. The cells were subsequently cultured and differentiated into myotubes. DNA and RNA were harvested before and after differentiation for genome-wide DNA methylation and RNA expression measurements. After correcting for multiple comparisons (q ≤ 0.05), 56 CpG sites were found to be significantly, differentially methylated in myoblasts from LBW compared with NBW men, of which the top five gene-annotated CpG sites (SKI, ARMCX3, NR5A2, NEUROG, ESRRG) previously have been associated to regulation of cholesterol, fatty acid and glucose metabolism and muscle development or hypertrophy. LBW men displayed markedly decreased myotube gene expression levels of the AMPK-repressing tyrosine kinase gene FYN and the histone deacetylase gene HDAC7. Silencing of FYN and HDAC7 was associated with impaired myotube formation, which for HDAC7 reduced muscle glucose uptake. Conclusions: The data provides evidence of impaired muscle development predisposing LBW individuals to T2D is linked to and potentially caused by distinct DNA methylation and transcriptional changes including down regulation of HDAC7 and FYN in their immature myoblast stem cells.
  •  
5.
  • Brøns, Charlotte, et al. (författare)
  • Deoxyribonucleic Acid Methylation and Gene Expression of PPARGC1A in Human Muscle Is Influenced by High-Fat Overfeeding in a Birth-Weight-Dependent Manner.
  • 2010
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : Oxford University Press. - 1945-7197. ; 95, s. 3048-3056
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Low birth weight (LBW) and unhealthy diets are risk factors of metabolic disease including type 2 diabetes (T2D). Genetic, nongenetic, and epigenetic data propose a role of the key metabolic regulator peroxisome proliferator-activated receptor gamma, coactivator 1alpha (PPARGC1A) in the development of T2D. Objective: Our objective was to investigate gene expression and DNA methylation of PPARGC1A and coregulated oxidative phosphorylation (OXPHOS) genes in LBW and normal birth weight (NBW) subjects during control and high-fat diets. Design, Subjects, and Main Outcome Measures: Twenty young healthy men with LBW and 26 matched NBW controls were studied after 5 d high-fat overfeeding (+50% calories) and after a control diet in a randomized manner. Hyperinsulinemic-euglycemic clamps were performed and skeletal muscle biopsies excised. DNA methylation and gene expression were measured using bisulfite sequencing and quantitative real-time PCR, respectively. Results: When challenged with high-fat overfeeding, LBW subjects developed peripheral insulin resistance and reduced PPARGC1A and OXPHOS (P < 0.05) gene expression. PPARGC1A methylation was significantly higher in LBW subjects (P = 0.0002) during the control diet. However, PPARGC1A methylation increased in only NBW subjects after overfeeding in a reversible manner. DNA methylation of PPARGC1A did not correlate with mRNA expression. Conclusions: LBW subjects developed peripheral insulin resistance and decreased gene expression of PPARGC1A and OXPHOS genes when challenged with fat overfeeding. The extent to which our finding of a constitutively increased DNA methylation in the PPARGC1A promoter in LBW subjects may contribute needs to be determined. We provide the first experimental support in humans that DNA methylation induced by overfeeding is reversible.
  •  
6.
  • Gillberg, Linn, et al. (författare)
  • Fasting unmasks differential fat and muscle transcriptional regulation of metabolic gene sets in low versus normal birth weight men
  • 2019
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 47, s. 341-351
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Individuals born with low birth weight (LBW) have an increased risk of metabolic diseases when exposed to diets rich in calories and fat but may respond to fasting in a metabolically preferential manner. We hypothesized that impaired foetal growth is associated with differential regulation of gene expression and epigenetics in metabolic tissues in response to fasting in young adulthood. Methods: Genome-wide expression and DNA methylation were analysed in subcutaneous adipose tissue (SAT) and skeletal muscle from LBW and normal birth weight (NBW) men after 36 h fasting and after an isocaloric control study using microarrays. Findings: Transcriptome analyses revealed that expression of genes involved in oxidative phosphorylation (OXPHOS) and other key metabolic pathways were lower in SAT from LBW vs NBW men after the control study, but paradoxically higher in LBW vs NBW men after 36 h fasting. Thus, fasting was associated with downregulated OXPHOS and metabolic gene sets in NBW men only. Likewise, in skeletal muscle only NBW men downregulated OXPHOS genes with fasting. Few epigenetic changes were observed in SAT and muscle between the groups. Interpretation: Our results provide insights into the molecular mechanisms in muscle and adipose tissue governing a differential metabolic response in subjects with impaired foetal growth when exposed to fasting in adulthood. The results support the concept of developmental programming of metabolic diseases including type 2 diabetes. Fund: The Swedish Research Council, the Danish Council for Strategic Research, the Novo Nordisk foundation, the Swedish Foundation for Strategic Research, The European Foundation for the Study of Diabetes, The EU 6th Framework EXGENESIS grant and Rigshospitalet.
  •  
7.
  • Hjort, Line, et al. (författare)
  • 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner
  • 2017
  • Ingår i: Clinical Epigenetics. - : BioMed Central (BMC). - 1868-7075. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Subjects born with low birth weight (LBW) display a more energy-conserving response to fasting compared with normal birth weight (NBW) subjects. However, the molecular mechanisms explaining these metabolic differences remain unknown. Environmental influences may dynamically affect epigenetic marks, also in postnatal life. Here, we aimed to study the effects of short-term fasting on leptin (LEP) and adiponectin (ADIPOQ) DNA methylation and gene expression in subcutaneous adipose tissue (SAT) from subjects with LBW and NBW. Methods: Twenty-one young LBW men and 18 matched NBW controls were studied during 36 h fasting. Eight subjects from each group completed a control study (overnight fast). We analyzed SAT LEP and ADIPOQ methylation (Epityper MassARRAY), gene expression (q-PCR), and adipokine plasma levels. Results: After overnight fast (control study), LEP and ADIPOQ DNA methylation levels were higher in LBW compared to those in NBW subjects (p ≤ 0.03) and increased with 36 h fasting in NBW subjects only (p ≤ 0.06). Both LEP and ADIPOQ methylation levels were positively associated with total body fat percentage (p ≤ 0.05). Plasma leptin levels were higher in LBW versus NBW subjects after overnight fasting (p = 0.04) and decreased more than threefold in both groups after 36 h fasting (p ≤ 0.0001). Conclusions: This is the first study to demonstrate that fasting induces changes in DNA methylation. This was shown in LEP and ADIPOQ promoters in SAT among NBW but not LBW subjects. The altered epigenetic flexibility in LBW subjects might contribute to their differential response to fasting, adipokine levels, and increased risk of metabolic disease.
  •  
8.
  • Volkov, P., et al. (författare)
  • A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits
  • 2016
  • Ingår i: Plos One. - : Public Library of Science. - 1932-6203. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, highdensity lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys) metabolic traits associated with the development of obesity and diabetes.
  •  
9.
  • Ahlqvist, Emma, et al. (författare)
  • A link between GIP and osteopontin in adipose tissue and insulin resistance.
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 1939-327X. ; 62:6, s. 2088-2094
  • Tidskriftsartikel (refereegranskat)abstract
    • Low grade inflammation in obesity is associated with accumulation of the macrophagederived cytokine osteopontin in adipose tissue and induction of local as well as systemic insulin resistance. Since GIP (glucose-dependent insulinotropic polypeptide) is a strong stimulator of adipogenesis and may play a role in the development of obesity, we explored whether GIP directly would stimulate osteopontin (OPN) expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher in adipose tissue of obese individuals (0.13±}0.04 vs 0.04±}0.01, P<0.05) and correlated inversely with measures of insulin sensitivity (r=-0.24, P=0.001). A common variant of the GIP receptor (GIPR) (rs10423928) gene was associated with lower amount of the exon 9 containing isoform required for transmembrane activity. Carriers of the A-allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone, but also as a trigger of inflammation and insulin resistance in adipose tissue. Carriers of GIPR rs10423928 A-allele showed protective properties via reduced GIP effects. Identification of this unprecedented link between GIP and OPN in adipose tissue might open new avenues for therapeutic interventions.
  •  
10.
  • Arora, Geeti, et al. (författare)
  • Association between genetic risk variants and glucose intolerance during pregnancy in north Indian women
  • 2018
  • Ingår i: BMC Medical Genomics. - : BioMed Central (BMC). - 1755-8794. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Gestational diabetes (GDM) is a more common problem in India than in many other parts of the world but it is not known whether this is due to unique environmental factors or a unique genetic background. To address this question we examined whether the same genetic variants associated with GDM and Type 2 Diabetes (T2D) in Caucasians also were associated with GDM in North Indian women. Methods Five thousand one hundred pregnant women of gestational age 24–28 weeks from Punjab were studied by a 75 g oral glucose tolerance test (OGTT). GDM was diagnosed by both WHO1999 and 2013 criteria. 79 single nucleotide polymorphisms (SNPs) previously associated with T2D and glycemic traits (12 of them also with GDM) and 6 SNPs from previous T2D associations based on Indian population (some also with European) were genotyped on a Sequenom platform or using Taqman assays in DNA from 4018 women. Results In support of previous findings in Caucasian GDM, SNPs at KCJN11 and GRB14 loci were nominally associated with GDM1999 risk in Indian women (both p = 0.02). Notably, T2D risk alleles of the variant rs1552224 near CENTD2, rs11708067 in ADCY5 and rs11605924 in CRY2 genes associated with protection from GDM regardless of criteria applied (p < 0.025). SNPs rs7607980 near COBLL1 (p = 0.0001), rs13389219 near GRB14 (p = 0.026) and rs10423928 in the GIPR gene (p = 0.012) as well as the genetic risk score (GRS) for these previously shown insulin resistance loci here associated with insulin resistance defined by HOMA2-IR and showed a trend towards GDM. GRS comprised of 3 insulin secretion loci here associated with insulin secretion but not GDM. Conclusions GDM in women from Punjab in Northern India shows a genetic component, seemingly driven by insulin resistance and secretion and partly shared with GDM in other parts of the world. Most previous T2D loci discovered in European studies did not associate with GDM in North India, indicative of different genetic etiology or alternately, differences in the linkage disequilibrium (LD) structure between populations in which the associated SNPs were identified and Northern Indian women. Interestingly some T2D risk variants were in fact indicative of being protective for GDM in these Indian women.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy