SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bull Caroline J.) ;pers:(Gruber Stephen B.)"

Search: WFRF:(Bull Caroline J.) > Gruber Stephen B.

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bull, Caroline J., et al. (author)
  • Adiposity, metabolites, and colorectal cancer risk : Mendelian randomization study
  • 2020
  • In: BMC Medicine. - : BMC. - 1741-7015. ; 18:1
  • Journal article (peer-reviewed)abstract
    • Background Higher adiposity increases the risk of colorectal cancer (CRC), but whether this relationship varies by anatomical sub-site or by sex is unclear. Further, the metabolic alterations mediating the effects of adiposity on CRC are not fully understood. Methods We examined sex- and site-specific associations of adiposity with CRC risk and whether adiposity-associated metabolites explain the associations of adiposity with CRC. Genetic variants from genome-wide association studies of body mass index (BMI) and waist-to-hip ratio (WHR, unadjusted for BMI; N = 806,810), and 123 metabolites from targeted nuclear magnetic resonance metabolomics (N = 24,925), were used as instruments. Sex-combined and sex-specific Mendelian randomization (MR) was conducted for BMI and WHR with CRC risk (58,221 cases and 67,694 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry). Sex-combined MR was conducted for BMI and WHR with metabolites, for metabolites with CRC, and for BMI and WHR with CRC adjusted for metabolite classes in multivariable models. Results In sex-specific MR analyses, higher BMI (per 4.2 kg/m(2)) was associated with 1.23 (95% confidence interval (CI) = 1.08, 1.38) times higher CRC odds among men (inverse-variance-weighted (IVW) model); among women, higher BMI (per 5.2 kg/m(2)) was associated with 1.09 (95% CI = 0.97, 1.22) times higher CRC odds. WHR (per 0.07 higher) was more strongly associated with CRC risk among women (IVW OR = 1.25, 95% CI = 1.08, 1.43) than men (IVW OR = 1.05, 95% CI = 0.81, 1.36). BMI or WHR was associated with 104/123 metabolites at false discovery rate-corrected P <= 0.05; several metabolites were associated with CRC, but not in directions that were consistent with the mediation of positive adiposity-CRC relations. In multivariable MR analyses, associations of BMI and WHR with CRC were not attenuated following adjustment for representative metabolite classes, e.g., the univariable IVW OR for BMI with CRC was 1.12 (95% CI = 1.00, 1.26), and this became 1.11 (95% CI = 0.99, 1.26) when adjusting for cholesterol in low-density lipoprotein particles. Conclusions Our results suggest that higher BMI more greatly raises CRC risk among men, whereas higher WHR more greatly raises CRC risk among women. Adiposity was associated with numerous metabolic alterations, but none of these explained associations between adiposity and CRC. More detailed metabolomic measures are likely needed to clarify the mechanistic pathways.
  •  
2.
  • Murphy, Neil, et al. (author)
  • Associations between Glycemic Traits and Colorectal Cancer : A Mendelian Randomization Analysis
  • 2022
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 114:5, s. 740-752
  • Journal article (peer-reviewed)abstract
    • Background: Glycemic traits - such as hyperinsulinemia, hyperglycemia, and type 2 diabetes - have been associated with higher colorectal cancer risk in observational studies; however, causality of these associations is uncertain. We used Mendelian randomization (MR) to estimate the causal effects of fasting insulin, 2-hour glucose, fasting glucose, glycated hemoglobin (HbA1c), and type 2 diabetes with colorectal cancer. Methods: Genome-wide association study summary data were used to identify genetic variants associated with circulating levels of fasting insulin (n = 34), 2-hour glucose (n = 13), fasting glucose (n = 70), HbA1c (n = 221), and type 2 diabetes (n = 268). Using 2-sample MR, we examined these variants in relation to colorectal cancer risk (48 214 case patient and 64 159 control patients). Results: In inverse-variance models, higher fasting insulin levels increased colorectal cancer risk (odds ratio [OR] per 1-SD = 1.65, 95% confidence interval [CI] = 1.15 to 2.36). We found no evidence of any effect of 2-hour glucose (OR per 1-SD = 1.02, 95% CI = 0.86 to 1.21) or fasting glucose (OR per 1-SD = 1.04, 95% CI = 0.88 to 1.23) concentrations on colorectal cancer risk. Genetic liability to type 2 diabetes (OR per 1-unit increase in log odds = 1.04, 95% CI = 1.01 to 1.07) and higher HbA1c levels (OR per 1-SD = 1.09, 95% CI = 1.00 to 1.19) increased colorectal cancer risk, although these findings may have been biased by pleiotropy. Higher HbA1c concentrations increased rectal cancer risk in men (OR per 1-SD = 1.21, 95% CI = 1.05 to 1.40), but not in women. Conclusions: Our results support a causal effect of higher fasting insulin, but not glucose traits or type 2 diabetes, on increased colorectal cancer risk. This suggests that pharmacological or lifestyle interventions that lower circulating insulin levels may be beneficial in preventing colorectal tumorigenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view