SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Burnet N G) ;hsvcat:3"

Search: WFRF:(Burnet N G) > Medical and Health Sciences

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dadaev, T, et al. (author)
  • Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants
  • 2018
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 2256-
  • Journal article (peer-reviewed)abstract
    • Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
  •  
2.
  •  
3.
  • Conti, David, V, et al. (author)
  • Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
  • 2021
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:1, s. 65-75
  • Journal article (peer-reviewed)abstract
    • Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction. A meta-analysis of genome-wide association studies across different populations highlights new risk loci and provides a genetic risk score that can stratify prostate cancer risk across ancestries.
  •  
4.
  •  
5.
  • Burnet, N G, et al. (author)
  • Describing patients' normal tissue reactions: concerning the possibility of individualising radiotherapy dose prescriptions based on potential predictive assays of normal tissue radiosensitivity. Steering Committee of the BioMed2 European Union Concerted Action Programme on the Development of Predictive Tests of Normal Tissue Response to Radiation Therapy.
  • 1998
  • In: International journal of cancer. Journal international du cancer. - 0020-7136. ; 79:6, s. 606-13
  • Journal article (peer-reviewed)abstract
    • Clinical radiotherapeutic doses are limited by the tolerance of normal tissues. Patients given a standard treatment exhibit a range of normal tissue reactions, and a better understanding of this individual variation might allow for individualisation of radiotherapeutic prescriptions, with consequent improvement in the therapeutic ratio. At present, there is no simple way to describe normal tissue reactions, which hampers communication between clinic and laboratory and between groups from different centres. There is also no method for comparing the severity of reactions in different normal tissues. This arises largely because there is no definition of a "normal" reaction, an "extreme" reaction or the particular term "over-reactor" (OR). This report proposes definitions for these terms, as well as a simple terminology for describing normal tissue reactions in patients having radiotherapy. The "normal" range represents the individual variation in normal tissue reactions amongst large numbers of patients treated in the same way which is within clinically acceptable limits. The term "OR" is applied to an individual whose reaction is more severe than the normal range but also implies that this forced a major change in the radiotherapeutic prescription or that the reactions were very severe or fatal. A "severe OR" would develop serious problems with a typical radical dose, while an "extreme OR" would have such difficulties at a much lower dose. To describe the normal range, a numerical scale is suggested, from 1 to 5, resistant to sensitive. The term "highly radiosensitive" (HR) is suggested for category 5. An "informal" relative scale, as suggested here, is quick and simple. It should allow comparison between different hospitals, compensate for differences in radiotherapeutic dose and technique and allow comparison of reactions between different anatomical sites. It should be adequate for discriminating patients at the extremes of the normal range from those at the centre. It is hoped that the definitions and terminology proposed here will aid communication in the field of predictive testing of normal tissue radiosensitivity.
  •  
6.
  • Burnet, N G, et al. (author)
  • Normal tissue radiosensitivity--how important is it?
  • 1996
  • In: Clinical oncology (Royal College of Radiologists (Great Britain)). - 0936-6555. ; 8:1, s. 25-34
  • Journal article (peer-reviewed)abstract
    • The success of radiotherapy in eradicating tumours depends on the total radiation dose, but what limits this dose is the tolerance of the normal tissues within the treatment volume. Selection of the appropriate dose for all patients is based on a balance between minimising the incidence of severe normal tissue complications and maximizing the probability of local control. In patients treated to the same radical dose, a wide range of reactions is seen; in many clinical situations, radical doses are limited by the minority of patients whose normal tissues are particularly sensitive. Clinical studies of radiotherapy reactions have demonstrated that a large part of the spectrum of normal tissue reactions, perhaps as much as 80%, is due to differences in individual normal tissue sensitivity. This suggests that it might be possible to measure this sensitivity and to change treatment accordingly. The main objective of normal tissue sensitivity testing is to permit dose escalation without increased normal tissue complication rates in patients with more resistant normal tissues. Calculations suggest that the most "resistant' 40% of patients could be dose escalated by 17%-18%, which is likely to be associated with significant gains in local control, perhaps by as much as 34%-36%; this should translate into an increase in overall survival. It should also be possible to identify those relatively few patients who suffer serious normal tissue morbidity with conventional doses. Thus, if successful, predictive testing of normal tissue response should improve the therapeutic ratio of radiotherapy.
  •  
7.
  • Burnet, N G, et al. (author)
  • Prediction of normal-tissue tolerance to radiotherapy from in-vitro cellular radiation sensitivity.
  • 1992
  • In: Lancet. - 0140-6736. ; 339:8809, s. 1570-1
  • Journal article (peer-reviewed)abstract
    • The success of radiotherapy depends on the total radiation dose, which is limited by the tolerance of surrounding normal tissues. Since there is substantial variation among patients in normal-tissue radiosensitivity, we have tested the hypothesis that in-vitro cellular radiosensitivity is correlated with in-vitro normal-tissue responses. We exposed skin fibroblast cell lines from six radiation-treated patients to various doses of radiation and measured the proportions surviving. There was a strong relation between fibroblast sensitivity in vitro and normal-tissue reactions, especially acute effects. Assessment of radiosensitivity could lead to improved tumour cure rates by enabling radiation doses to be tailored to the individual.
  •  
8.
  • Burnet, N G, et al. (author)
  • The relationship between cellular radiation sensitivity and tissue response may provide the basis for individualising radiotherapy schedules.
  • 1994
  • In: Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. - 0167-8140. ; 33:3, s. 228-38
  • Journal article (peer-reviewed)abstract
    • There is a wide variation in normal tissue reactions to radiotherapy and in many situations the severity of these reactions limits radiotherapy dose. Clinical fractionation studies carried out in Gothenburg have demonstrated that a large part of the spectrum of normal tissue reactions is due to differences in individual normal tissue sensitivity. If this variation in normal tissue reactions is due to differences in intrinsic cellular radiosensitivity, it should be possible to predict tissue response based on measurement of cellular sensitivity. Here we report the initial results of a study aimed at establishing whether a direct relationship exists between cellular radiosensitivity and tissue response. Ten fibroblasts strains, including four duplicates, were established from a group of patients in the Gothenburg fractionation trials who had received radiotherapy following mastectomy. Skin doses were measured and both acute and late skin changes were observed following radiotherapy. Right and left parasternal areas were treated with different dose fractionation schedules. Clonogenic assays were used to assess intrinsic cellular radiosensitivity, and all experiments were carried out without prior knowledge of the clinical response, or which strains were duplicates. Irradiation was carried out using 60Co gamma-rays at high dose-rate (HDR) of 1-2 Gy/min and low dose-rate (LDR) of 1 cGy/min. A spectrum of sensitivity was seen, with SF2 values of 0.17-0.28 at HDR and 0.25-0.34 at LDR, and values of D0.01 of 5.07-6.38 Gy at HDR and 6.43-8.12 Gy at LDR. Comparison of the in vitro results with the clinical normal tissue effects shows a correlation between cellular sensitivity and late tissue reactions, which is highly significant with p = 0.02. A correlation between cellular sensitivity and acute effects was noted in the left-sided parasternal fields, but not the right. This is thought to be coincidental, and without biological significance. Our results suggest that cellular sensitivity might form the basis for the development of an assay system capable of predicting late normal tissue effects to curative radiotherapy, which might allow dose escalation in some patients. Increased local control and cure, with unchanged or improved normal tissue complications, could result from such individualised radiotherapy prescriptions.
  •  
9.
  • Carlomagno, F, et al. (author)
  • Comparison of DNA repair protein expression and activities between human fibroblast cell lines with different radiosensitivities.
  • 2000
  • In: International journal of cancer. Journal international du cancer. - 0020-7136. ; 85:6, s. 845-9
  • Journal article (peer-reviewed)abstract
    • In order to investigate the molecular basis of variation in response to ionising radiation (IR) in radiotherapy patients, we have studied the expression of several genes involved in DNA double-strand break repair pathways in fibroblast cell lines. Ten lines were established from skin biopsies of cancer patients with different normal-tissue reactions to IR, and 3 from a control individual. For all 10 test cell lines, the cellular radiosensitivity was also known. Using Western blots we measured, in non-irradiated cells, the basal expression levels of ATM, Rad1 and Hus1, involved in the control of cellular DNA damage checkpoints, together with DNA-PKcs, Ku70, Ku80; XRCC4, ligaseIV and Rad51, involved in radiation- induced DSB repair. We also analysed the in vitro enzymatic activities, under non-irradiated conditions, of the DNA-PK and XRCC4/ligaseIV complexes. The levels of expression of the different proteins were similar in all the cell lines, but the activities of the DNA-PK and XRCC4/ligaseIV complexes showed some differences. These differences did not correlate with either the normal tissue response of the patient in vivo or with cellular radiation sensitivity in vitro. The activity differences of these enzyme complexes, therefore, do not account for the variation of responses seen between patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view