SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burt David) ;pers:(Edwards Scott V.)"

Sökning: WFRF:(Burt David) > Edwards Scott V.

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jarvis, Erich D., et al. (författare)
  • Whole-genome analyses resolve early branches in the tree of life of modern birds
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1320-1331
  • Tidskriftsartikel (refereegranskat)abstract
    • To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
  •  
2.
  • Zhang, Guojie, et al. (författare)
  • Comparative genomics reveals insights into avian genome evolution and adaptation
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1311-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
  •  
3.
  • Warren, Wesley C, et al. (författare)
  • The genome of a songbird
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7289, s. 757-762
  • Tidskriftsartikel (refereegranskat)abstract
    • The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
  •  
4.
  • Feng, Shaohong, et al. (författare)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
5.
  • Balakrishnan, Christopher N., et al. (författare)
  • Gene duplication and fragmentation in the zebra finch major histocompatibility complex
  • 2010
  • Ingår i: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 8, s. 29-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results: The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion: The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages.
  •  
6.
  • Jarvis, Erich D., et al. (författare)
  • Phylogenomic analyses data of the avian phylogenomics project
  • 2015
  • Ingår i: GigaScience. - : Oxford University Press (OUP). - 2047-217X. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses. Findings: Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides, amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the concatenation-based ExaML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. Conclusions: The Avian Phylogenomics Project is the largest vertebrate phylogenomics project to date that we are aware of. The sequence, alignment, and tree data are expected to accelerate analyses in phylogenomics and other related areas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy