SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Calvo P) ;lar1:(liu)"

Search: WFRF:(Calvo P) > Linköping University

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Zannad, F., et al. (author)
  • Clinical outcome endpoints in heart failure trials: a European Society of Cardiology Heart Failure Association consensus document
  • 2013
  • In: European Journal of Heart Failure. - : Wiley. - 1388-9842 .- 1879-0844. ; 15:10, s. 1082-1094
  • Journal article (peer-reviewed)abstract
    • Endpoint selection is a critically important step in clinical trial design. It poses major challenges for investigators, regulators, and study sponsors, and it also has important clinical and practical implications for physicians and patients. Clinical outcomes of interest in heart failure trials include all-cause mortality, cause-specific mortality, relevant non-fatal morbidity (e.g. all-cause and cause-specific hospitalization), composites capturing both morbidity and mortality, safety, symptoms, functional capacity, and patient-reported outcomes. Each of these endpoints has strengths and weaknesses that create controversies regarding which is most appropriate in terms of clinical importance, sensitivity, reliability, and consistency. Not surprisingly, a lack of consensus exists within the scientific community regarding the optimal endpoint(s) for both acute and chronic heart failure trials. In an effort to address these issues, the Heart Failure Association of the European Society of Cardiology (HFA-ESC) convened a group of expert heart failure clinical investigators, biostatisticians, regulators, and pharmaceutical industry scientists (Nice, France, 12-13 February 2012) to evaluate the challenges of defining heart failure endpoints in clinical trials and to develop a consensus framework. This report summarizes the group's recommendations for achieving common views on heart failure endpoints in clinical trials.
  •  
4.
  • Aguilar-Calvo, Patricia, et al. (author)
  • Neuronal Ndst1 depletion accelerates prion protein clearance and slows neurodegeneration in prion infection
  • 2023
  • In: PLoS Pathogens. - : PUBLIC LIBRARY SCIENCE. - 1553-7366 .- 1553-7374. ; 19:9
  • Journal article (peer-reviewed)abstract
    • Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a major extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase), from neurons or astrocytes, we then investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, only affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of mice expressing unsulfated HS, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance. Prions cause a rapidly progressive neurologic disease and death with no curative treatment available. Prion aggregates accumulate exponentially in the brain of affected individuals triggering neuronal loss and neuroinflammation, yet the molecules that facilitate prion protein aggregation are largely unknown. We have found that prions in the brain preferentially bind to a highly sulfated endogenous polysaccharide, known as heparan sulfate (HS). Here we use genetically modified mice that express poorly sulfated, neuron-derived HS, and infect mice with different prions strains. We find that mice infected with a plaque-forming prion strain show a prolonged survival and fewer plaques compared to controls. We also found that recombinant prion protein was efficiently transported within the interstitial fluid of mice having poorly sulfated HS, suggesting more efficient clearance from the brain. Our study provides insight into how HS retains prion aggregates in the brain to accelerate disease and indicates a specific HS biosynthetic enzyme to target to enhance protein clearance.
  •  
5.
  • Aguilar-Calvo, Patricia, et al. (author)
  • Shortening heparan sulfate chains prolongs survival and reduces parenchymal plaques in prion disease caused by mobile, ADAM10-cleaved prions
  • 2020
  • In: Acta Neuropathologica. - : SPRINGER. - 0001-6322 .- 1432-0533. ; 139:3, s. 527-546
  • Journal article (peer-reviewed)abstract
    • Cofactors are essential for driving recombinant prion protein into pathogenic conformers. Polyanions promote prion aggregation in vitro, yet the cofactors that modulate prion assembly in vivo remain largely unknown. Here we report that the endogenous glycosaminoglycan, heparan sulfate (HS), impacts prion propagation kinetics and deposition sites in the brain. Exostosin-1 haploinsufficient (Ext1(+/-)) mice, which produce short HS chains, show a prolonged survival and a redistribution of plaques from the parenchyma to vessels when infected with fibrillar prions, and a modest delay when infected with subfibrillar prions. Notably, the fibrillar, plaque-forming prions are composed of ADAM10-cleaved prion protein lacking a glycosylphosphatidylinositol anchor, indicating that these prions are mobile and assemble extracellularly. By analyzing the prion-bound HS using liquid chromatography-mass spectrometry (LC-MS), we identified the disaccharide signature of HS differentially bound to fibrillar compared to subfibrillar prions, and found approximately 20-fold more HS bound to the fibrils. Finally, LC-MS of prion-bound HS from human patients with familial and sporadic prion disease also showed distinct HS signatures and higher HS levels associated with fibrillar prions. This study provides the first in vivo evidence of an endogenous cofactor that accelerates prion disease progression and enhances parenchymal deposition of ADAM10-cleaved, mobile prions.
  •  
6.
  • Lill, Christina M., et al. (author)
  • The role of TREM2 R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease
  • 2015
  • In: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 11:12, s. 1407-1416
  • Journal article (peer-reviewed)abstract
    • A rare variant in TREM2 (p.R47H, rs75932628) was recently reported to increase the risk of Alzheimer's disease (AD) and, subsequently, other neurodegenerative diseases, i.e. frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Here we comprehensively assessed TREM2 rs75932628 for association with these diseases in a total of 19,940 previously untyped subjects of European descent. These data were combined with those from 28 published data sets by meta-analysis. Furthermore, we tested whether rs75932628 shows association with amyloid beta (Ab42) and total-tau protein levels in the cerebrospinal fluid (CSF) of 828 individuals with AD or mild cognitive impairment. Our data show that rs75932628 is highly significantly associated with the risk of AD across 24,086 AD cases and 148,993 controls of European descent (odds ratio or OR = 2.71, P = 4.67 x 10(-25)). No consistent evidence for association was found between this marker and the risk of FTLD (OR = 2.24, P = .0113 across 2673 cases/9283 controls), PD (OR 5 1.36, P = .0767 across 8311 cases/79,938 controls) and ALS (OR 5 1.41, P = .198 across 5544 cases/7072 controls). Furthermore, carriers of the rs75932628 risk allele showed significantly increased levels of CSF-total-tau (P = .0110) but not Ab42 suggesting that TREM2's role in AD may involve tau dysfunction. (C) 2015 The Alzheimer's Association.
  •  
7.
  •  
8.
  • Sevillano, Alejandro M., et al. (author)
  • Prion protein glycans reduce intracerebral fibril formation and spongiosis in prion disease
  • 2020
  • In: Journal of Clinical Investigation. - : AMER SOC CLINICAL INVESTIGATION INC. - 0021-9738 .- 1558-8238. ; 130:3, s. 1350-1362
  • Journal article (peer-reviewed)abstract
    • Posttranslational modifications (PTMs) are common among proteins that aggregate in neurodegenerative disease, yet how PTMs impact the aggregate conformation and disease progression remains unclear. By engineering knockin mice expressing prion protein (PrP) lacking 2 N-linked glycans (Prnp(1)(80Q)(/196Q)), we provide evidence that glycans reduce spongiform degeneration and hinder plaque formation in prion disease.Prnp(1)(80Q)(/196Q )mice challenged with 2 subfibrillar, non-plaque-forming prion strains instead developed plaques highly enriched in ADAM10-cleaved PrP and heparan sulfate (HS). Intriguingly, a third strain composed of intact, glycophosphatidylinositol-anchored (GPI-anchored) PrP was relatively unchanged, forming diffuse, HS-deficient deposits in both the Prnp(1)(80Q/196Q) and WT mice, underscoring the pivotal role of the GPI-anchor in driving the aggregate conformation and disease phenotype. Finally, knockin mice expressing triglycosylated PrP (Prnp(187N)) challenged with a plaque-forming prion strain showed a phenotype reversal, with a striking disease acceleration and switch from plaques to predominantly diffuse, subfibrillar deposits. Our findings suggest that the dominance of subfibrillar aggregates in prion disease is due to the replication of GPI-anchored prions, with fibrillar plaques forming from poorly glycosylated, GPI-anchorless prions that interact with extracellular HS. These studies provide insight into how PTMs impact PrP interactions with polyanionic cofactors, and highlight PTMs as a major force driving the prion disease phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view