SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Calvo Patricia) ;pers:(Bett Cyrus)"

Sökning: WFRF:(Calvo Patricia) > Bett Cyrus

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aguilar-Calvo, Patricia, et al. (författare)
  • Generation of novel neuroinvasive prions following intravenous challenge
  • 2018
  • Ingår i: Brain Pathology. - : WILEY. - 1015-6305 .- 1750-3639. ; 28:6, s. 999-1011
  • Tidskriftsartikel (refereegranskat)abstract
    • Prions typically spread into the central nervous system (CNS), likely via peripheral nerves. Yet prion conformers differ in their capacity to penetrate the CNS; certain fibrillar prions replicate persistently in lymphoid tissues with no CNS entry, leading to chronic silent carriers. Subclinical carriers of variant Creutzfeldt-Jakob (vCJD) prions in the United Kingdom have been estimated at 1:2000, and vCJD prions have been transmitted through blood transfusion, however, the circulating prion conformers that neuroinvade remain unclear. Here we investigate how prion conformation impacts brain entry of transfused prions by challenging mice intravenously to subfibrillar and fibrillar strains. We show that most strains infiltrated the brain and caused terminal disease, however, the fibrillar prions showed reduced CNS entry in a strain-dependent manner. Strikingly, the highly fibrillar mCWD prion strain replicated in the spleen and emerged in the brain as a novel strain, indicating that a new neuroinvasive prion had been generated from a previously non-neuroinvasive strain. The new strain showed altered plaque morphology, brain regions targeted and biochemical properties and these properties were maintained upon intracerebral passage. Intracerebral passage of prion-infected spleen re-created the new strain. Splenic prions resembled the new strain biochemically and intracerebral passage of prion-infected spleen re-created the new strain, collectively suggesting splenic prion replication as a potential source. Taken together, these results indicate that intravenous exposure to prion-contaminated blood or blood products may generate novel neuroinvasive prion conformers and disease phenotypes, potentially arising from prion replication in non-neural tissues or from conformer selection.
  •  
2.
  • Aguilar-Calvo, Patricia, et al. (författare)
  • Post-translational modifications in PrP expand the conformational diversity of prions in vivo
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Misfolded prion protein aggregates (PrPSc) show remarkable structural diversity and are associated with highly variable disease phenotypes. Similarly, other proteins, including amyloid-beta, tau, alpha-synuclein, and serum amyloid A, misfold into distinct conformers linked to different clinical diseases through poorly understood mechanisms. Here we use mice expressing glycophosphatidylinositol (GPI)anchorless prion protein, PrPC, together with hydrogen-deuterium exchange coupled with mass spectrometry (HXMS) and a battery of biochemical and biophysical tools to investigate how posttranslational modifications impact the aggregated prion protein properties and disease phenotype. Four GPI-anchorless prion strains caused a nearly identical clinical and pathological disease phenotype, yet maintained their structural diversity in the anchorless state. HXMS studies revealed that GPIanchorless PrPSc is characterized by substantially higher protection against hydrogen/deuterium exchange in the C-terminal region near the N-glycan sites, suggesting this region had become more ordered in the anchorless state. For one strain, passage of GPI-anchorless prions into wild type mice led to the emergence of a novel strain with a unique biochemical and phenotypic signature. For the new strain, histidine hydrogen-deuterium mass spectrometry revealed altered packing arrangements of beta-sheets that encompass residues 139 and 186 of PrPSc. These findings show how variation in posttranslational modifications may explain the emergence of new protein conformations in vivo and also provide a basis for understanding how the misfolded protein structure impacts the disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy