SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Campbell A) ;hsvcat:4"

Sökning: WFRF:(Campbell A) > Lantbruksvetenskap

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garratt, Michael P D, et al. (författare)
  • Opportunities to reduce pollination deficits and address production shortfalls in an important insect pollinated crop
  • 2021
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582.
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of 'pollination deficits', where maximum yield is not being achieved due to insufficient pollination, we use an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries as well as compare 'pollinator dependence' across different apple varieties. We found evidence of pollination deficits and in some cases, risks of over-pollination were even apparent where fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others, in terms of avoiding a pollination deficit and crop yield shortfalls due to sub-optimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrate that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help target local management to address deficits although crop variety has a strong influence on the role of pollinators.
  •  
2.
  • Albrecht, Matthias, et al. (författare)
  • The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield : a quantitative synthesis
  • 2020
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 23:10, s. 1488-1498
  • Tidskriftsartikel (refereegranskat)abstract
    • Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.
  •  
3.
  • Allen-Perkins, Alfonso, et al. (författare)
  • CropPol : a dynamic, open and global database on crop pollination
  • 2022
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 103:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved.
  •  
4.
  • Hutchinson, Louise A., et al. (författare)
  • Using ecological and field survey data to establish a national list of the wild bee pollinators of crops
  • 2021
  • Ingår i: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 315
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of wild bees for crop pollination is well established, but less is known about which species contribute to service delivery to inform agricultural management, monitoring and conservation. Using sites in Great Britain as a case study, we use a novel qualitative approach combining ecological information and field survey data to establish a national list of crop pollinating bees for four economically important crops (apple, field bean, oilseed rape and strawberry). A traits data base was used to establish potential pollinators, and combined with field data to identify both dominant crop flower visiting bee species and other species that could be important crop pollinators, but which are not presently sampled in large numbers on crops flowers. Whilst we found evidence that a small number of common, generalist species make a disproportionate contribution to flower visits, many more species were identified as potential pollinators, including rare and specialist species. Furthermore, we found evidence of substantial variation in the bee communities of different crops. Establishing a national list of crop pollinators is important for practitioners and policy makers, allowing targeted management approaches for improved ecosystem services, conservation and species monitoring. Data can be used to make recommendations about how pollinator diversity could be promoted in agricultural landscapes. Our results suggest agri-environment schemes need to support a higher diversity of species than at present, notably of solitary bees. Management would also benefit from targeting specific species to enhance crop pollination services to particular crops. Whilst our study is focused upon Great Britain, our methodology can easily be applied to other countries, crops and groups of pollinating insects.
  •  
5.
  • Campbell, Bruce M., et al. (författare)
  • Agriculture production as a major driver of the Earth system exceeding planetary boundaries
  • 2017
  • Ingår i: Ecology & Society. - 1708-3087. ; 22:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or safe limits: land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone depletion, atmospheric aerosol loading, and introduction of novel entities. Two planetary boundaries have been fully transgressed, i.e., are at high risk, biosphere integrity and biogeochemical flows, and agriculture has been the major driver of the transgression. Three are in a zone of uncertainty i.e., at increasing risk, with agriculture the major driver of two of those, land-system change and freshwater use, and a significant contributor to the third, climate change. Agriculture is also a significant or major contributor to change for many of those planetary boundaries still in the safe zone. To reduce the role of agriculture in transgressing planetary boundaries, many interventions will be needed, including those in broader food systems.
  •  
6.
  • Gardner, Emma, et al. (författare)
  • Reliably predicting pollinator abundance : Challenges of calibrating process-based ecological models
  • 2020
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 11:12, s. 1673-1689
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollination is a key ecosystem service for global agriculture but evidence of pollinator population declines is growing. Reliable spatial modelling of pollinator abundance is essential if we are to identify areas at risk of pollination service deficit and effectively target resources to support pollinator populations. Many models exist which predict pollinator abundance but few have been calibrated against observational data from multiple habitats to ensure their predictions are accurate. We selected the most advanced process-based pollinator abundance model available and calibrated it for bumblebees and solitary bees using survey data collected at 239 sites across Great Britain. We compared three versions of the model: one parameterised using estimates based on expert opinion, one where the parameters are calibrated using a purely data-driven approach and one where we allow the expert opinion estimates to inform the calibration process. All three model versions showed significant agreement with the survey data, demonstrating this model's potential to reliably map pollinator abundance. However, there were significant differences between the nesting/floral attractiveness scores obtained by the two calibration methods and from the original expert opinion scores. Our results highlight a key universal challenge of calibrating spatially explicit, process-based ecological models. Notably, the desire to reliably represent complex ecological processes in finely mapped landscapes necessarily generates a large number of parameters, which are challenging to calibrate with ecological and geographical data that are often noisy, biased, asynchronous and sometimes inaccurate. Purely data-driven calibration can therefore result in unrealistic parameter values, despite appearing to improve model-data agreement over initial expert opinion estimates. We therefore advocate a combined approach where data-driven calibration and expert opinion are integrated into an iterative Delphi-like process, which simultaneously combines model calibration and credibility assessment. This may provide the best opportunity to obtain realistic parameter estimates and reliable model predictions for ecological systems with expert knowledge gaps and patchy ecological data.
  •  
7.
  • Högberg, Peter, et al. (författare)
  • High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms
  • 2008
  • Ingår i: New Phytologist. - : New Phytologist Trust. - 0028-646X .- 1469-8137. ; 177:1, s. 220-228
  • Tidskriftsartikel (refereegranskat)abstract
    • • Half of the biological activity in forest soils is supported by recent tree photosynthate, but no study has traced in detail this flux of carbon from the canopy to soil microorganisms in the field.• Using 13CO2, we pulse-labelled over 1.5 h a 50-m2 patch of 4-m-tall boreal Pinus sylvestris forest in a 200-m3 chamber.• Tracer levels peaked after 24 h in soluble carbohydrates in the phloem at a height of 0.3 m, after 2–4 d in soil respiratory efflux, after 4–7 d in ectomycorrhizal roots, and after 2–4 d in soil microbial cytoplasm. Carbon in the active pool in needles, in soluble carbohydrates in phloem and in soil respiratory efflux had half-lives of 22, 17 and 35 h, respectively. Carbon in soil microbial cytoplasm had a half-life of 280 h, while the carbon in ectomycorrhizal root tips turned over much more slowly. Simultaneous labelling of the soil with showed that the ectomycorrhizal roots, which were the strongest sinks for photosynthate, were also the most active sinks for soil nitrogen.• These observations highlight the close temporal coupling between tree canopy photosynthesis and a significant fraction of soil activity in forests.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy