SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Campbell Michael) ;mspu:(doctoralthesis)"

Search: WFRF:(Campbell Michael) > Doctoral thesis

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Llopart Cudié, Xavier (author)
  • Design and characterization of 64K pixels chips working in single photon processing mode
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • Progress in CMOS technology and in fine pitch bump bonding has made possible the development of high granularity single photon counting detectors for X-ray imaging. This thesis studies the design and characterization of three pulse processing chips with 65536 square pixels of 55 μm x 55 μm designed in a commercial 0.25 μm 6-metal CMOS technology. The 3 chips share the same architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix. The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256 identical elements, each working in single photon counting mode for positive or negative input charge signals. The preamplifier feedback provides compensation for detector leakage current on a pixel by pixel basis. Two identical pulse height discriminators are used to define an energy window. Every event falling inside the energy window is counted with a 13-bit pseudo-random counter. The counter logic, based in a shift register, also behaves as the input/output register for the pixel. Each cell also has an 8-bit configuration register which allows masking, test-enabling and 3-bit individual threshold adjust for each discriminator. The chip can be configured in serial mode and readout either serially or in parallel. Measurements show an electronic noise ~160 e- rms with a gain of ~9 mV/ke-. The threshold spread after equalization of ~120 e- rms brings the full chip minimum detectable charge to ~1100 e-. The analog static power consumption is ~8 μW per pixel with Vdda=2.2 V. The Mpix2MXR20 is an upgraded version of the Medipix2. The main changes in the pixel consist of: an improved tolerance to radiation, improved pixel to pixel threshold uniformity, and a 14-bit counter with overflow control. The chip periphery includes new threshold DACs with smaller step size, improved linearity, and better temperature dependence. Timepix is an evolution of the Mpix2MXR20 which provides independently in each pixel information of arrival time, time-over-threshold or event counting. Timepix uses as a time reference an external clock (Ref_Clk) up to 100 MHz which is distributed all over the pixel matrix during acquisition mode. The preamplifier is improved and there is a single discriminator with 4-bit threshold adjustment in order to reduce the minimum detectable charge limit. Measurements show an electrical noise ~100 e- rms and a gain of ~16.5 mV/ke-. The threshold spread after equalization of ~35 e- rms brings the full chip minimum detectable charge either to ~650 e- with a naked chip (i.e. gas detectors) or ~750 e- when bump-bonded to a detector. The pixel static power consumption is ~13.5 μW per pixel with Vdda=2.2 V and Ref_Clk=80 MHz. This family of chips have been used for a wide variety of applications. During these studies a number of limitations have come to light. Among those are limited energy resolution and surface area. Future developments, such as Medipix3, will aim to address those limitations by carefully exploiting developments in microelectronics.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
Type of content
other academic/artistic (2)
Author/Editor
Campbell, Michael (2)
Fröjdh, Christer (1)
Thungström, Göran, 1 ... (1)
Norlin, Börje, 1967- (1)
Llopart Cudié, Xavie ... (1)
Fröjdh, Erik (1)
University
Mid Sweden University (2)
Language
English (2)
Research subject (UKÄ/SCB)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view