SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Capdevila Joan) "

Sökning: WFRF:(Capdevila Joan)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sudre, Carole H., et al. (författare)
  • Attributes and predictors of long COVID
  • 2021
  • Ingår i: Nature Medicine. - : Nature Publishing Group. - 1078-8956 .- 1546-170X. ; 27:4, s. 626-631
  • Tidskriftsartikel (refereegranskat)abstract
    • Reports of long-lasting coronavirus disease 2019 (COVID-19) symptoms, the so-called ‘long COVID’, are rising but little is known about prevalence, risk factors or whether it is possible to predict a protracted course early in the disease. We ana- lyzed data from 4,182 incident cases of COVID-19 in which individuals self-reported their symptoms prospectively in the COVID Symptom Study app1. A total of 558 (13.3%) partici- pants reported symptoms lasting ≥28 days, 189 (4.5%) for ≥8 weeks and 95 (2.3%) for ≥12 weeks. Long COVID was characterized by symptoms of fatigue, headache, dyspnea and anosmia and was more likely with increasing age and body mass index and female sex. Experiencing more than five symptoms during the first week of illness was associated with long COVID (odds ratio = 3.53 (2.76–4.50)). A simple model to distinguish between short COVID and long COVID at 7 days (total sample size, n = 2,149) showed an area under the curve of the receiver operating characteristic curve of 76%, with replication in an independent sample of 2,472 individuals who were positive for severe acute respiratory syndrome coronavi- rus 2. This model could be used to identify individuals at risk of long COVID for trials of prevention or treatment and to plan education and rehabilitation services. 
  •  
2.
  • Varsavsky, T., et al. (författare)
  • Detecting COVID-19 infection hotspots in England using large-scale self-reported data from a mobile application : a prospective, observational study
  • 2021
  • Ingår i: The Lancet Public Health. - : Elsevier Ltd. - 2468-2667. ; 6:1, s. e21-e29
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundAs many countries seek to slow the spread of COVID-19 without reimposing national restrictions, it has become important to track the disease at a local level to identify areas in need of targeted intervention.MethodsIn this prospective, observational study, we did modelling using longitudinal, self-reported data from users of the COVID Symptom Study app in England between March 24, and Sept 29, 2020. Beginning on April 28, in England, the Department of Health and Social Care allocated RT-PCR tests for COVID-19 to app users who logged themselves as healthy at least once in 9 days and then reported any symptom. We calculated incidence of COVID-19 using the invited swab (RT-PCR) tests reported in the app, and we estimated prevalence using a symptom-based method (using logistic regression) and a method based on both symptoms and swab test results. We used incidence rates to estimate the effective reproduction number, R(t), modelling the system as a Poisson process and using Markov Chain Monte-Carlo. We used three datasets to validate our models: the Office for National Statistics (ONS) Community Infection Survey, the Real-time Assessment of Community Transmission (REACT-1) study, and UK Government testing data. We used geographically granular estimates to highlight regions with rapidly increasing case numbers, or hotspots.FindingsFrom March 24 to Sept 29, 2020, a total of 2 873 726 users living in England signed up to use the app, of whom 2 842 732 (98·9%) provided valid age information and daily assessments. These users provided a total of 120 192 306 daily reports of their symptoms, and recorded the results of 169 682 invited swab tests. On a national level, our estimates of incidence and prevalence showed a similar sensitivity to changes to those reported in the ONS and REACT-1 studies. On Sept 28, 2020, we estimated an incidence of 15 841 (95% CI 14 023–17 885) daily cases, a prevalence of 0·53% (0·45–0·60), and R(t) of 1·17 (1·15–1·19) in England. On a geographically granular level, on Sept 28, 2020, we detected 15 (75%) of the 20 regions with highest incidence according to government test data.InterpretationOur method could help to detect rapid case increases in regions where government testing provision is lower. Self-reported data from mobile applications can provide an agile resource to inform policy makers during a quickly moving pandemic, serving as a complementary resource to more traditional instruments for disease surveillance.
  •  
3.
  • Asnicar, Francesco, et al. (författare)
  • Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals
  • 2021
  • Ingår i: Nature Medicine. - : Nature Publishing Group. - 1078-8956. ; 27:2, s. 321-332
  • Tidskriftsartikel (refereegranskat)abstract
    • The gut microbiome is shaped by diet and influences host metabolism; however, these links are complex and can be unique to each individual. We performed deep metagenomic sequencing of 1,203 gut microbiomes from 1,098 individuals enrolled in the Personalised Responses to Dietary Composition Trial (PREDICT 1) study, whose detailed long-term diet information, as well as hundreds of fasting and same-meal postprandial cardiometabolic blood marker measurements were available. We found many significant associations between microbes and specific nutrients, foods, food groups and general dietary indices, which were driven especially by the presence and diversity of healthy and plant-based foods. Microbial biomarkers of obesity were reproducible across external publicly available cohorts and in agreement with circulating blood metabolites that are indicators of cardiovascular disease risk. While some microbes, such as Prevotella copri and Blastocystis spp., were indicators of favorable postprandial glucose metabolism, overall microbiome composition was predictive for a large panel of cardiometabolic blood markers including fasting and postprandial glycemic, lipemic and inflammatory indices. The panel of intestinal species associated with healthy dietary habits overlapped with those associated with favorable cardiometabolic and postprandial markers, indicating that our large-scale resource can potentially stratify the gut microbiome into generalizable health levels in individuals without clinically manifest disease.
  •  
4.
  • Berry, Sarah E., et al. (författare)
  • Human postprandial responses to food and potential for precision nutrition
  • 2020
  • Ingår i: Nature Medicine. - : Nature Publishing Group. - 1078-8956. ; 26:6, s. 964-973
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolic responses to food influence risk of cardiometabolic disease, but large-scale high-resolution studies are lacking. We recruited n = 1,002 twins and unrelated healthy adults in the United Kingdom to the PREDICT 1 study and assessed postprandial metabolic responses in a clinical setting and at home. We observed large inter-individual variability (as measured by the population coefficient of variation (s.d./mean, %)) in postprandial responses of blood triglyceride (103%), glucose (68%) and insulin (59%) following identical meals. Person-specific factors, such as gut microbiome, had a greater influence (7.1% of variance) than did meal macronutrients (3.6%) for postprandial lipemia, but not for postprandial glycemia (6.0% and 15.4%, respectively); genetic variants had a modest impact on predictions (9.5% for glucose, 0.8% for triglyceride, 0.2% for C-peptide). Findings were independently validated in a US cohort (n = 100 people). We developed a machine-learning model that predicted both triglyceride (r = 0.47) and glycemic (r = 0.77) responses to food intake. These findings may be informative for developing personalized diet strategies. The ClinicalTrials.gov registration identifier is NCT03479866.
  •  
5.
  • Sudre, C. H., et al. (författare)
  • Symptom clusters in COVID-19 : A potential clinical prediction tool from the COVID Symptom Study app
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:12
  • Tidskriftsartikel (refereegranskat)abstract
    • As no one symptom can predict disease severity or the need for dedicated medical support in coronavirus disease 2019 (COVID-19), we asked whether documenting symptom time series over the first few days informs outcome. Unsupervised time series clustering over symptom presentation was performed on data collected from a training dataset of completed cases enlisted early from the COVID Symptom Study Smartphone application, yielding six distinct symptom presenta- tions. Clustering was validated on an independent replication dataset between 1 and 28 May 2020. Using the first 5 days of symptom logging, the ROC-AUC (receiver operating characteristic – area under the curve) of need for respiratory sup- port was 78.8%, substantially outperforming personal characteristics alone (ROC-AUC 69.5%). Such an approach could be used to monitor at-risk patients and predict medical resource requirements days before they are required. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy