SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carlson R. F.) ;pers:(Mikhailov V. V.)"

Sökning: WFRF:(Carlson R. F.) > Mikhailov V. V.

  • Resultat 1-10 av 135
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adriani, O., et al. (författare)
  • Pamela's measurements of magnetospheric effects on high-energy solar particles
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 801:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections, is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument enables unique observations of SEPs including the composition and angular distribution of the particles about the magnetic field, i.e., pitch angle distribution, over a broad energy range (>80 MeV)-bridging a critical gap between space-based and ground-based measurements. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions: a low-energy population that extends to 90 degrees and a population that is beamed at high energies (>1 GeV), consistent with neutron monitor measurements. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe that these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth's magnetosheath.
  •  
2.
  • Bongi, M, et al. (författare)
  • PAMELA : A satellite experiment for antiparticles measurement in cosmic rays
  • 2004
  • Ingår i: IEEE Transactions on Nuclear Science. - 0018-9499 .- 1558-1578. ; 51:3, s. 854-859
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite-borne experiment that will study the antiproton and positron fluxes in cosmic rays in a wide range of energy (from 80 MeV up to 190 GeV for antiprotons and from 50 MeV up to 270 GeV for positrons) and with high statistics, and that will measure the antihelium/helium ratio with a sensitivity of the order of 10(-8). The detector will fly on-board a polar orbiting Resurs DK1 satellite, which will be launched into space by a Soyuz rocket in 2004 from Baikonur cosmodrome in Kazakhstan, for a 3-year-long mission. Particle identification and energy measurements are performed in the PAMELA apparatus using the following subdetectors: a magnetic spectrometer made up of a permanent magnet equipped with double-sided microstrip silicon detectors, an electromagnetic imaging calorimeter composed of layers of tungsten absorber and silicon detectors planes, a transition radiation detector made of straw tubes interleaved with carbon fiber radiators, a plastic scintillator time-of-flight and trigger system, a set of anticounter plastic scintillator detectors, and a neutron detector. The features of the detectors and the main results obtained in beam test sessions are presented.
  •  
3.
  • Carbone, R., et al. (författare)
  • Pamela observation of the 2012 may 17 gle event
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) satellite-borne experiment has been collecting data in orbit since July 2006, providing accurate measurements of the energy spectra and composition of the cosmic radiation from a few hundred MeV/n up to hundred GeV/n. This wide interval of measured energies makes PAMELA a unique instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but also PAMELA carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). PAMELA has registered many SEP events in solar cycle 24 including the 2012 May 17 GLE event (GLE 71), offering unique opportunities to address the question of high-energy SEP origin. Experimental performances and preliminary results on the 2012 May 17 events will be presented. We will discuss the derived particle injection time and compare with other time scales at the Sun including the flare and CME onset times. 
  •  
4.
  • Di Felice, V., et al. (författare)
  • Solar modulation of galactic hydrogen and helium over the 23rd solar minimum with the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • PAMELA has been orbiting the Earth for more than six years, gathering data on solar, galactic and trapped cosmic rays during the time of the last solar minimum. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows charged particle and antiparticle identification over a wide energy range and with an unprecedented precision. The quasi-polar orbit of the instrument, with an inclination of 70 degrees, makes it possible to measure low energy particles starting from about 100 MeV/n. In this work we present the time and rigidity dependence of the galactic proton and helium fluxes over the first 4 years of operation during the A < 0 solar minimum of solar cycle 23. 
  •  
5.
  • Martucci, M., et al. (författare)
  • Analysis on H spectral shape during the early 2012 SEPs with the PAMELA experiment
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 742, s. 158-161
  • Tidskriftsartikel (refereegranskat)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 2006. This apparatus is designed to study charged particles in the cosmic radiation. The combination of a permanent magnet, a silicon strip tracker and a silicon-tungsten imaging calorimeter, and the redundancy of instrumentation allow very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a very suitable instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but PAMELA also carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). In particular, PAMELA has registered many SEP events during solar cycle 24, offering unique opportunities to address the question of high-energy SEP origin. A preliminary analysis on proton spectra behaviour during this event is presented in this work.
  •  
6.
  • Mikhailov, V. V., et al. (författare)
  • Anisotropy analysis of positron data with the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA experiment is carried out on board of satellite the Resurs DK1 since 2006 for precision study of cosmic ray antiparticles. The instrument is equipped with magnetic spectrometer, silicon-tungsten imaging electromagnetic calorimeter, neutron detector which give possibility to separate electron and positron over wide energy range up to hundreds GeVs and to measure their incoming direction with accuracy about 2 degree. For each detected particle a space arriving direction was reconstructed using trajectory inside the instrument and the satellite position on the orbit. Backtracking in geomagnetic field was done to obtain initial spatial distribution of particles outside of the Earth magnetosphere. This paper discuss a result of search a possible local sources by anisotropy analysis of positron data. 
  •  
7.
  • Mikhailov, V. V., et al. (författare)
  • Method of electrons and positrons separations by bremsstrahlung in the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • Imaging calorimeter of the PAMELA instrument on board the Resurs DK satellite has high spatial resolution and allows to measure separately electromagnetic showers from electrons and positrons and their bremsstahlung produced in ToF detectors of the instrument. Measuring events with two showers provides proton rejection coefficient more than 104 at energy between 0.5 and 3 GeV. Results of positrons fractions obtained by this method are in agreement with previously published data of the PAMELA experiment at low energy. It confirms in independent way strong positron modulation during period of negative polarity of the Sun magnetic field.
  •  
8.
  • Munini, R., et al. (författare)
  • Solar modulation of galactic cosmic rays electrons and positrons over the 23rd solar minimum with the pamela experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 15th June 2006, when it was launched from the Baikonur cosmodrome to detect the charged component of cosmic rays over a wide energy range and with an unprecedented statistics. The apparatus design is particularly suited for particle and antiparticle identification. The satellite quasi-polar orbit, with an inclination of 70 degrees, allows particles to be measure down to 100 MeV/n. This makes the instrument suited for the investigation of phenomena related to galactic cosmic ray solar modulation in the inner heliosphere. Data for oppositely charged particles were collected from 2006 to 2009, during the A< 0 solar minimum of solar cycle 23. The time and rigidity dependence of galactic cosmic ray electron and positron fluxes were measured. These fluxes provide important information for the study of charge dependent solar modulation effects. 
  •  
9.
  • Ricci, M., et al. (författare)
  • Study on 2012 march 7 solar particle event and forbush decrease with the PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astro-physics) space-borne experiment was launched on 15 June 2006 and has been continuously collecting data since then. The apparatus measures electrons, positrons, protons, anti-protons and heavier nuclei from about 100 MeV to several hundreds of GeV. The on-board instrumentation is built around a permanent magnet with a silicon microstrip tracker, providing charge and track detection information. During solar maximum conditions of solar cycle 24, PAMELA has been providing key information about solar energetic particles (SEPs) and their influence at Earth. We discuss here the recent 2012 March 7 SEP event with a brief comment on the subsequent Forbush decrease, registered by PAMELA. This event was also observed by Fermi/LAT exhibiting unprecedented time-extended γ-ray emission (> 100 MeV) lasting nearly 20 hours. We compare the derived accelerated ion population at the Sun with the ion population measured in space by PAMELA and discuss the implications for particle acceleration. 
  •  
10.
  • Adriani, O., et al. (författare)
  • Antiprotons in primary cosmic radiation with PAMELA experiment
  • 2013
  • Ingår i: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Konferensbidrag (refereegranskat)abstract
    • The latest measurements of antiprotons spectrum and antiproton-to-proton ratio in primary cosmic rays with PAMELA experiment are presented. They are in good agreement with model of secondary production of antiprotons in Galaxy, but they do not completely rule other sources at the high-energies. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 135

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy