SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chanock Stephen) ;pers:(Gapstur Susan M)"

Sökning: WFRF:(Chanock Stephen) > Gapstur Susan M

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Conti, David, V, et al. (författare)
  • Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
  • 2021
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:1, s. 65-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction. A meta-analysis of genome-wide association studies across different populations highlights new risk loci and provides a genetic risk score that can stratify prostate cancer risk across ancestries.
  •  
2.
  • Adams, Charleen, et al. (författare)
  • Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study
  • 2019
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 28:1, s. 208-216
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Whether associations between circulating metabolites and prostate cancer are causal is unknown. We report on the largest study of metabolites and prostate cancer (2,291 cases and 2,661 controls) and appraise causality for a subset of the prostate cancer-metabolite associations using two-sample Mendelian randomization (MR).MATERIALS AND METHODS: The case-control portion of the study was conducted in nine UK centres with men aged 50-69 years who underwent prostate-specific antigen (PSA) screening for prostate cancer within the Prostate testing for cancer and Treatment (ProtecT) trial. Two data sources were used to appraise causality: a genome-wide association study (GWAS) of metabolites in 24,925 participants and a GWAS of prostate cancer in 44,825 cases and 27,904 controls within the Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium.RESULTS: Thirty-five metabolites were strongly associated with prostate cancer (p <0.0014, multiple-testing threshold). These fell into four classes: i) lipids and lipoprotein subclass characteristics (total cholesterol and ratios, cholesterol esters and ratios, free cholesterol and ratios, phospholipids and ratios, and triglyceride ratios); ii) fatty acids and ratios; iii) amino acids; iv) and fluid balance. Fourteen top metabolites were proxied by genetic variables, but MR indicated these were not causal.CONCLUSIONS: We identified 35 circulating metabolites associated with prostate cancer presence, but found no evidence of causality for those 14 testable with MR. Thus, the 14 MR-tested metabolites are unlikely to be mechanistically important in prostate cancer risk.IMPACT: The metabolome provides a promising set of biomarkers that may aid prostate cancer classification.
  •  
3.
  • Fu, Yi-Ping, et al. (författare)
  • The 19q12 Bladder Cancer GWAS Signal : Association with Cyclin E Function and Aggressive Disease
  • 2014
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 74:20, s. 5808-5818
  • Tidskriftsartikel (refereegranskat)abstract
    • A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell-cycle protein. We performed genetic fine-mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r(2) >= 0.7) associated with increased bladder cancer risk. From this group, we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWASs, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele OR = 1.18 [95% confidence interval (CI), 1.09-1.27, P = 4.67 x 10(-5)] versus OR = 1.01 (95% CI, 0.93-1.10, P = 0.79) for nonaggressive disease, with P = 0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (P = 0.013) and, independently, with each rs7257330-A risk allele (P-trend = 0.024). Overexpression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E overexpression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models.
  •  
4.
  • Matejcic, Marco, et al. (författare)
  • Germline variation at 8q24 and prostate cancer risk in men of European ancestry
  • 2018
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 x 10(-15)), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95% CI = 3.62-4.40) greater risk compared to the population average. These 12 variants account for similar to 25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification.
  •  
5.
  • Sampson, Joshua N., et al. (författare)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
6.
  • Wang, Zhaoming, et al. (författare)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
7.
  • Wu, Lang, et al. (författare)
  • Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk : A Transcriptome-Wide Association Study in over 140,000 European Descendants
  • 2019
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 79:13, s. 3192-3204
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association study-identified prostate cancer risk variants explain only a relatively small fraction of its familial relative risk, and the genes responsible for many of these identified associations remain unknown. To discover novel prostate cancer genetic loci and possible causal genes at previously identified risk loci, we performed a transcriptome-wide association study in 79,194 cases and 61,112 controls of European ancestry. Using data from the Genotype-Tissue Expression Project, we established genetic models to predict gene expression across the transcriptome for both prostate models and cross-tissue models and evaluated model performance using two independent datasets. We identified significant associations for 137 genes at P < 2.61 x 10(-6), a Bonferroni-corrected threshold, including nine genes that remained significant at P < 2.61 x 10(-6) after adjusting for all known prostate cancer risk variants in nearby regions. Of the 128 remaining associated genes, 94 have not yet been reported as potential target genes at known loci. We silenced 14 genes and many showed a consistent effect on viability and colony-forming efficiency in three cell lines. Our study provides substantial new information to advance our understanding of prostate cancer genetics and biology. Significance: This study identifies novel prostate cancer genetic loci and possible causal genes, advancing our understanding of the molecular mechanisms that drive prostate cancer.
  •  
8.
  • Ahearn, Thomas U., et al. (författare)
  • Common variants in breast cancer risk loci predispose to distinct tumor subtypes
  • 2022
  • Ingår i: Breast Cancer Research. - : Springer Nature. - 1465-5411 .- 1465-542X. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundGenome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear.MethodsAmong 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes.ResultsEighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions.ConclusionThis report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.
  •  
9.
  • Barrdahl, Myrto, et al. (författare)
  • A comprehensive analysis of polymorphic variants in steroid hormone and insulin-like growth factor-1 metabolism and risk of in situ breast cancer : Results from the Breast and Prostate Cancer Cohort Consortium
  • 2018
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 142:6, s. 1182-1188
  • Tidskriftsartikel (refereegranskat)abstract
    • We assessed the association between 1,414 single nucleotide polymorphisms (SNPs) in genes involved in synthesis and metabolism of steroid hormones and insulin-like growth factor 1, and risk of breast cancer in situ (BCIS), with the aim of determining whether any of these were disease specific. This was carried out using 1,062 BCIS cases and 10,126 controls as well as 6,113 invasive breast cancer cases from the Breast and Prostate Cancer Cohort Consortium (BPC3). Three SNPs showed at least one nominally significant association in homozygous minor versus homozygous major models. ACVR2A-rs2382112 (ORhom=3.05, 95%CI=1.72-5.44, Phom=1.47 × 10-4), MAST2-rs12124649 (ORhom=1.73, 95% CI =1.18-2.54, Phom=5.24 × 10-3), and INSR-rs10500204 (ORhom=1.96, 95% CI=1.44-2.67, Phom=1.68 × 10-5) were associated with increased risk of BCIS; however, only the latter association was significant after correcting for multiple testing. Furthermore, INSR-rs10500204 was more strongly associated with the risk of BCIS than invasive disease in case-only analyses using the homozygous minor versus homozygous major model (ORhom=1.78, 95% CI=1.30-2.44, Phom=3.23 × 10-4). The SNP INSR-rs10500204 is located in an intron of the INSR gene and is likely to affect binding of the promyelocytic leukemia (PML) protein. The PML gene is known as a tumor suppressor and growth regulator in cancer. However, it is not clear on what pathway the A-allele of rs10500204 could operate to influence the binding of the protein. Hence, functional studies are warranted to investigate this further.
  •  
10.
  • Barrdahl, Myrto, et al. (författare)
  • Association of breast cancer risk loci with breast cancer survival
  • 2015
  • Ingår i: International Journal of Cancer. - : Wiley-Blackwell. - 0020-7136 .- 1097-0215. ; 137:12, s. 2837-2845
  • Tidskriftsartikel (refereegranskat)abstract
    • The survival of breast cancer patients is largely influenced by tumor characteristics, such as TNM stage, tumor grade and hormone receptor status. However, there is growing evidence that inherited genetic variation might affect the disease prognosis and response to treatment. Several lines of evidence suggest that alleles influencing breast cancer risk might also be associated with breast cancer survival. We examined the associations between 35 breast cancer susceptibility loci and the disease over-all survival (OS) in 10,255 breast cancer patients from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3) of which 1,379 died, including 754 of breast cancer. We also conducted a meta-analysis of almost 35,000 patients and 5,000 deaths, combining results from BPC3 and the Breast Cancer Association Consortium (BCAC) and performed in silico analyses of SNPs with significant associations. In BPC3, the C allele of LSP1-rs3817198 was significantly associated with improved OS (HRper-allele=0.70; 95% CI: 0.58-0.85; ptrend=2.84 x 10-4; HRheterozygotes=0.71; 95% CI: 0.55-0.92; HRhomozygotes=0.48; 95% CI: 0.31-0.76; p2DF=1.45 x 10-3). In silico, the C allele of LSP1-rs3817198 was predicted to increase expression of the tumor suppressor cyclin-dependent kinase inhibitor 1C (CDKN1C). In the meta-analysis, TNRC9-rs3803662 was significantly associated with increased death hazard (HRMETA =1.09; 95% CI: 1.04-1.15; ptrend=6.6 x 10-4; HRheterozygotes=0.96 95% CI: 0.90-1.03; HRhomozygotes=1.21; 95% CI: 1.09-1.35; p2DF=1.25 x 10-4). In conclusion, we show that there is little overlap between the breast cancer risk single nucleotide polymorphisms (SNPs) identified so far and the SNPs associated with breast cancer prognosis, with the possible exceptions of LSP1-rs3817198 and TNRC9-rs3803662.What's new? Genetic factors are known to influence the risk of breast cancer, but inherited genetic variation may also affect disease prognosis and response to treatment. In this study, the we investigated whether single nucleotide polymorphisms (SNPs) that are known to be associated with breast cancer risk might also influence the survival of breast-cancer patients. While two of the investigated SNPs may influence survival, there was otherwise no indication that SNP alleles related to breast cancer risk also play a role in the survival of breast cancer patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37
Typ av publikation
tidskriftsartikel (37)
Typ av innehåll
refereegranskat (37)
Författare/redaktör
Chanock, Stephen J (33)
Kraft, Peter (26)
Albanes, Demetrius (25)
Stevens, Victoria L (22)
Giles, Graham G (22)
visa fler...
Hunter, David J (21)
Haiman, Christopher ... (20)
Khaw, Kay-Tee (19)
Le Marchand, Loïc (19)
Riboli, Elio (18)
Canzian, Federico (18)
Yeager, Meredith (18)
Trichopoulos, Dimitr ... (17)
Rothman, Nathaniel (17)
Bueno-de-Mesquita, H ... (16)
Chatterjee, Nilanjan (16)
Travis, Ruth C (15)
Diver, W Ryan (15)
Weiderpass, Elisabet ... (14)
Wolk, Alicja (14)
Berndt, Sonja I (14)
Cancel-Tassin, Geral ... (14)
Severi, Gianluca (14)
Hoover, Robert N. (14)
Garcia-Closas, Monts ... (14)
Gaudet, Mia M. (13)
Lissowska, Jolanta (13)
Black, Amanda (13)
Kaaks, Rudolf (12)
Gago Dominguez, Manu ... (12)
Johansson, Mattias (12)
Zheng, Wei (12)
Gaziano, J Michael (12)
Brennan, Paul (12)
Cussenot, Olivier (12)
Kogevinas, Manolis (11)
White, Emily (11)
Peters, Ulrike (11)
Easton, Douglas F. (11)
Buring, Julie E (11)
Hutchinson, Amy (11)
Chang-Claude, Jenny (10)
Krogh, Vittorio (10)
Koutros, Stella (10)
Vineis, Paolo (10)
Tjonneland, Anne (10)
Shu, Xiao-Ou (10)
Virtamo, Jarmo (10)
Ljungberg, Börje (10)
visa färre...
Lärosäte
Umeå universitet (27)
Karolinska Institutet (26)
Uppsala universitet (17)
Lunds universitet (4)
Linköpings universitet (1)
Språk
Engelska (37)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (36)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy