SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chapman M. J.) srt2:(2005-2009);pers:(Saarelma S)"

Search: WFRF:(Chapman M. J.) > (2005-2009) > Saarelma S

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Meyer, H., et al. (author)
  • Overview of physics results from MAST
  • 2009
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 49:10, s. 104017-
  • Journal article (peer-reviewed)abstract
    • Several improvements to the MAST plant and diagnostics have facilitated new studies advancing the physics basis for ITER and DEMO, as well as for future spherical tokamaks (STs). Using the increased heating capabilities P-NBI <= 3.8 MW H-mode at I-P = 1.2 MA was accessed showing that the energy confinement on MAST scales more weakly with I-P and more strongly with B-t than in the ITER IPB98(y, 2) scaling. Measurements of the fuel retention of shallow pellets extrapolate to an ITER particle throughput of 70% of its original designed total throughput capacity. The anomalous momentum diffusion, chi(phi), is linked to the ion diffusion, chi(i), with a Prandtl number close to P-phi approximate to chi(phi)/chi(i) approximate to 1, although chi(i) approaches neoclassical values. New high spatial resolution measurements of the edge radial electric field, E-r, show that the position of steepest gradients in electron pressure and E-r (i.e. shearing rate) are coincident, but their magnitudes are not linked. The T-e pedestal width on MAST scales with root beta(ped)(pol) rather than rho(pol). The edge localized mode (ELM) frequency for type-IV ELMs, new in MAST, was almost doubled using n = 2 resonant magnetic perturbations from a set of four external coils (n = 1, 2). A new internal 12 coil set (n <= 3) has been commissioned. The filaments in the inter-ELM and L-mode phase are different from ELM filaments, and the characteristics in L-mode agree well with turbulence calculations. A variety of fast particle driven instabilities were studied from 10 kHz saturated fishbone like activity up to 3.8 MHz compressional Alfven eigenmodes. Fast particle instabilities also affect the off-axis NBI current drive, leading to fast ion diffusion of the order of 0.5 m(2) s(-1) and a reduction in the driven current fraction from 40% to 30%. EBW current drive start-up is demonstrated for the first time in a ST generating plasma currents up to 55 kA. Many of these studies contributed to the physics basis of a planned upgrade to MAST.
  •  
2.
  • Lloyd, B., et al. (author)
  • Overview of physics results from MAST
  • 2007
  • In: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 47:10, s. S658-S667
  • Journal article (peer-reviewed)abstract
    • Substantial advances have been made on the Mega AmpÚre Spherical Tokamak (MAST). The parameter range of the MAST confinement database has been extended and it now also includes pellet-fuelled discharges. Good pellet retention has been observed in H-mode discharges without triggering an ELM or an H/L transition during peripheral ablation of low speed pellets. Co-ordinated studies on MAST and DIII-D demonstrate a strong link between the aspect ratio and the beta scaling of H-mode energy confinement, consistent with that obtained when MAST data were merged with a subset of the ITPA database. Electron and ion ITBs are readily formed and their evolution has been investigated. Electron and ion thermal diffusivities have been reduced to values close to the ion neoclassical level. Error field correction coils have been used to determine the locked mode threshold scaling which is comparable to that in conventional aspect ratio tokamaks. The impact of plasma rotation on sawteeth has been investigated and the results have been well-modelled using the MISHKA-F code. Alfvén cascades have been observed in discharges with reversed magnetic shear. Measurements during off-axis NBCD and heating are consistent with classical fast ion modelling and indicate efficient heating and significant driven current. Central electron Bernstein wave heating has been observed via the O-X-B mode conversion process in special magnetically compressed plasmas. Plasmas with low pedestal collisionality have been established and further insight has been gained into the characteristics of filamentary structures at the plasma edge. Complex behaviour of the divertor power loading during plasma disruptions has been revealed by high resolution infra-red measurements.
  •  
3.
  • Chapman, I. T., et al. (author)
  • The physics of sawtooth stabilization
  • 2007
  • In: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 49:12B, s. B385-B394
  • Journal article (peer-reviewed)abstract
    • Long period sawteeth have been observed to result in low-beta triggering of neo-classical tearing modes, which can significantly degrade plasma confinement. Consequently, a detailed physical understanding of sawtooth behaviour is critical, especially for ITER where fusion-born a particles are likely to lead to very long sawtooth periods. Many techniques have been developed to control, and in particular to destabilize the sawteeth. The application of counter-current neutral beam injection (NBI) in JET has resulted in shorter sawtooth periods than in Ohmic plasmas. This result has been explained because, firstly, the counter-passing fast ions give a destabilizing contribution to the n=1 internal kink mode-which is accepted to be related to sawtooth oscillations-and secondly, the flow shear strongly influences the stabilizing trapped particles. A similar experimental result has been observed in counter-NBI heated plasmas in MAST. However, the strong toroidal flows in spherical tokamaks mean that the sawtooth behaviour is determined by the gyroscopic flow stabilization of the kink mode rather than kinetic effects. In NBI heated plasmas in smaller conventional aspect-ratio tokamaks, such as TEXTOR, the flow and kinetic effects compete to give different sawtooth behaviour. Other techniques applied to destabilize sawteeth are the application of electron cyclotron current drive (ECCD) or ion cyclotron resonance heating (ICRH). In JET, it has been observed that localized ICRH is able to destabilize sawteeth which were otherwise stabilized by a co-existing population of energetic trapped ions in the core. This is explained through the dual role of the ICRH in reducing the critical magnetic shear required to trigger a sawtooth crash, and the increase in the local magnetic shear which results from driving current near the q=1 rational surface. Sawtooth control in ITER could be provided by a combination of ECCD and co-passing off-axis negative-NBI fast ions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view