SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chatterjee D.) ;lar1:(kth)"

Sökning: WFRF:(Chatterjee D.) > Kungliga Tekniska Högskolan

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bhowmick, Asmit, et al. (författare)
  • Structural evidence for intermediates during O2 formation in photosystem II
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 617:7961, s. 629-636
  • Tidskriftsartikel (refereegranskat)abstract
    • In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O–O bond formation chemistry. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok’s photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok’s water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition, disappears or relocates in parallel with Yz reduction starting at approximately 700 μs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1–Mn4 distance, occurs at around 1,200 μs, signifying the presence of a reduced intermediate, possibly a bound peroxide.
  •  
3.
  • Bhowmick, S., et al. (författare)
  • Saliva as a biomarker of arsenic exposure
  • 2014
  • Ingår i: One Century of the Discovery of Arsenicosis in Latin America (1914-2014). - : CRC Press. - 9781138001411 ; , s. 540-542
  • Konferensbidrag (refereegranskat)abstract
    • Saliva is a biofluid that has not been used extensively as a biomonitoring tool in epidemiological studies. This study presents the arsenic (As) concentrations in saliva samples collected from populations of West Bengal, India. We found a significant (p < 0.05) association between the Log transformed Daily Ingestion of As (μg day-1) and the As concentration in saliva (r = 0.68). Additionally, As concentration of saliva and urine also had a significant positive correlation (r = 0.60, p < 0.05). Male participants, smokers and cases of skin lesion were independently and significantly associated with increase in salivary As. Thus our findings show that saliva is a useful biomarker of As exposure in the study population.
  •  
4.
  •  
5.
  •  
6.
  • Bhowmick, S., et al. (författare)
  • Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India : Understanding geogenic and anthropogenic influences
  • 2013
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 262, s. 915-923
  • Tidskriftsartikel (refereegranskat)abstract
    • A comparative hydrogeochemical study was carried out in West Bengal, India covering three physiographic regions, Debagram and Chakdaha located in the Bhagirathi-Hooghly alluvial plain and Baruipur in the delta front, to demonstrate the control of geogenic and anthropogenic influences on groundwater arsenic (As) mobilization. Groundwater samples (n=90) from tube wells were analyzed for different physico-chemical parameters. The low redox potential (Eh=-185 to -86mV) and dominant As(III) and Fe(II) concentrations are indicative of anoxic nature of the aquifer. The shallow (<100m) and deeper (>100m) aquifers of Bhagirathi-Hooghly alluvial plains as well as shallow aquifers of delta front are characterized by Ca2+HCO3 - type water, whereas Na+ and Cl- enrichment is found in the deeper aquifer of delta front. The equilibrium of groundwater with respect to carbonate minerals and their precipitation/dissolution seems to be controlling the overall groundwater chemistry. The low SO4 2- and high DOC, PO4 3- and HCO3 - concentrations in groundwater signify ongoing microbial mediated redox processes favoring As mobilization in the aquifer. The As release is influenced by both geogenic (i.e. geomorphology) and anthropogenic (i.e. unsewered sanitation) processes. Multiple geochemical processes, e.g., Fe-oxyhydroxides reduction and carbonate dissolution, are responsible for high As occurrence in groundwaters.
  •  
7.
  • Chatterjee, D., et al. (författare)
  • Groundwater arsenic in the fluvial Bengal plains : geochemistry and mitigation
  • 2013
  • Ingår i: PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL SYMPOSIUM ON WATER-ROCK INTERACTION, WRI 14. - : ELSEVIER SCIENCE BV. ; , s. 143-146
  • Konferensbidrag (refereegranskat)abstract
    • The water quality and chemistry of the groundwater of the fluvial Bengal plains have been investigated. It has been found that shallow aquifers (< 50 m bgl) are contaminated in a few pockets, surrounded by areas with low arsenic (As)/As-free groundwater, while the deeper aquifer (> 100 m bgl) is generally free from As (< 10 mu g/L). It also reveals that multiple As mobilization processes are occurring simultaneously, rather than any single geochemical process. An attempt has been made to demonstrate the degree of As heterogeneity with groundwater quality, and this has been followed by a few local conditions. The study further suggests that the As distribution (spatio-vertical) helps to identify safe shallow aquifers, and several signatures (colour of the sediments /land use pattern/ geomorphological features /local recharge events) are apparent that can be useful for formulating long-term mitigation options.
  •  
8.
  • Halder, Dipti, et al. (författare)
  • Risk of arsenic exposure from drinking water and dietary components : Implications for risk management in rural Bengal
  • 2013
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 47:2, s. 1120-1127
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the risk of arsenic (As) exposure to the communities in rural Bengal, even when they have been supplied with As safe drinking water. The estimates of exposure via dietary and drinking water routes show that, when people are consuming water with an As concentration of less than 10 μg L-1, the total daily intake of inorganic As (TDI-iAs) exceeds the previous provisional tolerable daily intake (PTDI) value of 2.1 μg day-1 kg-1 BW, recommended by the World Health Organization (WHO) in 35% of the cases due to consumption of rice. When the level of As concentration in drinking water is above 10 μg L-1, the TDI-iAs exceeds the previous PTDI for all the participants. These results imply that, when rice consumption is a significant contributor to the TDI-iAs, supplying water with an As concentration at the current national drinking water standard for India and Bangladesh would place many people above the safety threshold of PTDI. We also found that the consumption of vegetables in rural Bengal does not pose a significant health threat to the population independently. This study suggests that any effort to mitigate the As exposure of the villagers in Bengal must consider the risk of As exposure from rice consumption together with drinking water.
  •  
9.
  • Neidhardt, H., et al. (författare)
  • Influences of groundwater extraction on the distribution of dissolved As in shallow aquifers of West Bengal, India
  • 2013
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 262, s. 941-950
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report temporal changes of As concentrations in shallow groundwater of the Bengal Delta Plain (BDP). Observed fluctuations are primarily induced by seasonally occurring groundwater movement, but can also be connected to anthropogenic groundwater extraction. Between December 2009 and July 2010, pronounced variations in the groundwater hydrochemistry were recorded in groundwater samples of a shallow monitoring well tapping the aquifer in 22-25m depth, where Astot concentrations increased within weeks from 100 to 315μgL-1. These trends are attributed to a vertically shift of the hydrochemically stratified water column at the beginning of the monsoon season. This naturally occurring effect can be additionally superimposed by groundwater extraction, as demonstrated on a local scale by an in situ experiment simulating extensive groundwater withdrawal during the dry post-monsoon season. Results of this experiment suggest that groundwater extraction promoted an enduring change within the distribution of dissolved As in the local aquifer. Presented outcomes contribute to the discussion of anthropogenic pumping influences that endanger the limited and yet arsenic-free groundwater resources of the BDP.
  •  
10.
  • Neidhardt, H., et al. (författare)
  • Organic carbon induced mobilization of iron and manganese in a West Bengal aquifer and the muted response of groundwater arsenic concentrations
  • 2014
  • Ingår i: Chemical Geology. - : Elsevier BV. - 0009-2541 .- 1872-6836. ; 367, s. 51-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The exact circumstances that cause the widespread enrichment of Mn and As in groundwater of the Bengal Delta Plain (BDP) and many other Asian delta areas still remain a matter of debate in the scientific community. We conducted an in situ field experiment in the central BDP region to investigate the influence of organic matter on the mobility of Fe, Mn and As in shallow aquifers. The groundwater at our study site was initially characterized by a circum-neutral pH, low concentrations of O2, NO3 - and SO4 2-, and increased Fe, Mn and As concentrations, reflecting reducing conditions in the aquifer. Since organic matter controls microbially mediated redox processes which are believed to result in the mobilization of Fe, Mn and As from Holocene aquifer sediments, an easily degradable carbon source (sucrose) was introduced into a shallow aquifer via four nested monitoring wells and distributed by circular pumping. Initial sucrose concentrations reached up to 2.55mM in the local groundwater and induced a strong increase in the activity of indigenous microbes that decomposed the sucrose within the following 14days stepwise into intermediate catabolic products (e.g., acetic acid), and finally to CO2/HCO3 -. The formation of organic acids was accompanied by a temporary decline in the pH and the redox potential, as well as an increase in the concentration of most major and trace elements in the groundwater by several times. While Mn concentrations rose up to 81.3μM (representing a 7.5 fold increase), Fe (on average 96.7% Fe(II)) concentrations reached a considerable transient maximum of 1390μM, which was 36 times higher than the initial baseline value. The most significant observation of this experiment is that the relative increments of dissolved As (on average 95.8% As(III)) reached between 19 and 49% only, which is in clear contrast to the pronounced mobilization of Fe, Mn and other trace elements. Changes in the groundwater composition during the experiment imply that the mobilization of Fe and Mn was primarily caused by a reductive dissolution of Mn-oxides and Fe-(oxyhydr)oxides, resulting from the stimulation of indigenous bacteria by the addition sucrose. In this context, the release of As can be attributed to the dissolution of Fe-(oxyhydr)oxides, which constitute the principal source of As in the aquifer sediments according to mineralogical and geochemical analyses. In contrast to the pronounced mobilization of Fe, the response of groundwater arsenic concentrations appeared to be muted, as indicated by subsequently declining As to Fe mol ratios that dropped one order in magnitude. The remarkable decoupling of As from Fe mobilization indicates that the aquifer sediments were apparently capable of compensating for the additional release of As. We attribute this As buffer potential to remaining Fe-minerals and potentially newly formed Fe(II)- and mixed Fe(II/III)-mineral phases, which were able to readily immobilize dissolved As. Sequential extraction results of the initial aquifer sediments further support this interpretation, revealing that up to 85% of the total As in the sediments was already present in adsorbed form, with Fe-minerals as principal hosts. Hence, the experimental data implies that a biogeochemically controlled environment of competing As release and retention arose after the addition of sucrose, where Fe-mineral phases played a key role in buffering the release of As. We further conclude that organic carbon limited aquifer systems in the BDP with increased As concentrations in groundwater may exhibit an unexpected buffer potential towards an additional As release, even when vast amounts of easily degradable organic carbon are introduced into the system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy