SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chen H. C.) ;hsvcat:2"

Search: WFRF:(Chen H. C.) > Engineering and Technology

  • Result 1-10 of 64
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Abata, E., et al. (author)
  • Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV
  • 2010
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576 .- 0167-5087. ; 621:1-3, s. 134-150
  • Journal article (peer-reviewed)abstract
    • A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit. (C) 2010 Published by Elsevier B.V.
  •  
3.
  • Georgiev, Boris, et al. (author)
  • A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.
  •  
4.
  • Eatough, Ralph P., et al. (author)
  • Verification of Radiative Transfer Schemes for the EHT
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 897:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) Collaboration has recently produced the first resolved images of the central supermassive black hole in the giant elliptical galaxy M87. Here we report on tests of the consistency and accuracy of the general relativistic radiative transfer codes used within the collaboration to model M87∗ and Sgr A∗. We compare and evaluate (1) deflection angles for equatorial null geodesics in a Kerr spacetime; (2) images calculated from a series of simple, parameterized matter distributions in the Kerr metric using simplified emissivities and absorptivities; (3) for a subset of codes, images calculated from general relativistic magnetohydrodynamics simulations using different realistic synchrotron emissivities and absorptivities; (4) observables for the 2017 configuration of EHT, including visibility amplitudes and closure phases. The error in total flux is of order 1% when the codes are run with production numerical parameters. The dominant source of discrepancies for small camera distances is the location and detailed setup of the software "camera"that each code uses to produce synthetic images. We find that when numerical parameters are suitably chosen and the camera is sufficiently far away the images converge and that for given transfer coefficients, numerical uncertainties are unlikely to limit parameter estimation for the current generation of EHT observations. The purpose of this paper is to describe a verification and comparison of EHT radiative transfer codes. It is not to verify EHT models more generally.
  •  
5.
  • Wang, C. H., et al. (author)
  • High-k dielectrics on (100) and (110) n-InAs: Physical and electrical characterizations
  • 2014
  • In: AIP Advances. - : AIP Publishing. - 2158-3226. ; 4:4
  • Journal article (peer-reviewed)abstract
    • Two high-k dielectric materials (Al2O3 and HfO2) were deposited on n-type (100) and (110) InAs surface orientations to investigate physical properties of the oxide/semiconductor interfaces and the interface trap density (D-it). X-ray photoelectron spectroscopy analyses (XPS) for native oxides of (100) and (110) as-grown n-InAs epi wafers show an increase in As-oxide on the (100) surface and an increase in InOx on the (110) surface. In addition, XPS analyses of high-k (Al2O3 and HfO2) on n-InAs epi show that the intrinsic native oxide difference between (100) and (110) epi surfaces were eliminated by applying conventional in-situ pre-treatment (TriMethyAluminium (TMA)) before the high-k deposition. The capacitance-voltage (C-V) characterization of HfO2 and Al2O3 MOSCAPs on both types of n-InAs surfaces shows very similar C-V curves. The interface trap density (D-it) profiles show D-it minima of 6.1 x 10(12/)6.5 x 10(12) and 6.6 x 10(12)/7.3 x 10(12) cm(-2) eV(-1) for Al2O3 and HfO2, respectively for (100) and (110) InAs surfaces. The similar interface trap density (D-it) on (100) and (110) surface orientation were observed, which is beneficial to future InAs FinFET device with both (100) and (110) surface channel orientations present. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
  •  
6.
  • Tommasini, R., et al. (author)
  • Accepted Tutorials at The Web Conference 2022
  • 2022
  • In: WWW 2022 - Companion Proceedings of the Web Conference 2022. - New York, NY, USA : Association for Computing Machinery (ACM). ; , s. 391-399
  • Conference paper (peer-reviewed)abstract
    • This paper summarizes the content of the 20 tutorials that have been given at The Web Conference 2022: 85% of these tutorials are lecture style, and 15% of these are hands on. 
  •  
7.
  • Blösch, Günter, et al. (author)
  • Twenty-three unsolved problems in hydrology (UPH) - a community perspective
  • 2019
  • In: Hydrological Sciences Journal. - : Informa UK Limited. - 0262-6667 .- 2150-3435. ; 64:10, s. 1141-1158
  • Journal article (peer-reviewed)abstract
    • This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
  •  
8.
  • Lu, R.S., et al. (author)
  • A ring-like accretion structure in M87 connecting its black hole and jet
  • 2023
  • In: Nature. - 0028-0836 .- 1476-4687. ; 616:7958, s. 686-690
  • Journal article (peer-reviewed)abstract
    • The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.
  •  
9.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. II. Array and Instrumentation
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ∼1.3 mm, EHT angular resolution (λ/D) is ∼25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of the EHT, detail the technology and instrumentation that enable observations, and provide measures of its performance. Meeting the EHT science objectives has required several key developments that have facilitated the robust extension of the VLBI technique to EHT observing wavelengths and the production of instrumentation that can be deployed on a heterogeneous array of existing telescopes and facilities. To meet sensitivity requirements, high-bandwidth digital systems were developed that process data at rates of 64 gigabit s -1 , exceeding those of currently operating cm-wavelength VLBI arrays by more than an order of magnitude. Associated improvements include the development of phasing systems at array facilities, new receiver installation at several sites, and the deployment of hydrogen maser frequency standards to ensure coherent data capture across the array. These efforts led to the coordination and execution of the first Global EHT observations in 2017 April, and to event-horizon-scale imaging of the supermassive black hole candidate in M87.
  •  
10.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present the first event-horizon-scale images and spatiotemporal analysis of Sgr A* taken with the Event Horizon Telescope in 2017 April at a wavelength of 1.3 mm. Imaging of Sgr A* has been conducted through surveys over a wide range of imaging assumptions using the classical CLEAN algorithm, regularized maximum likelihood methods, and a Bayesian posterior sampling method. Different prescriptions have been used to account for scattering effects by the interstellar medium toward the Galactic center. Mitigation of the rapid intraday variability that characterizes Sgr A* has been carried out through the addition of a "variability noise budget" in the observed visibilities, facilitating the reconstruction of static full-track images. Our static reconstructions of Sgr A* can be clustered into four representative morphologies that correspond to ring images with three different azimuthal brightness distributions and a small cluster that contains diverse nonring morphologies. Based on our extensive analysis of the effects of sparse (u, v)-coverage, source variability, and interstellar scattering, as well as studies of simulated visibility data, we conclude that the Event Horizon Telescope Sgr A* data show compelling evidence for an image that is dominated by a bright ring of emission with a ring diameter of similar to 50 mu as, consistent with the expected "shadow" of a 4 x 10(6) M (circle dot) black hole in the Galactic center located at a distance of 8 kpc.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 64
Type of publication
journal article (48)
conference paper (14)
book (1)
other publication (1)
Type of content
peer-reviewed (59)
other academic/artistic (5)
Author/Editor
Kim, Jae-Young (10)
Akiyama, Kazunori (10)
Alef, Walter (10)
Bintley, Dan (10)
Britzen, Silke (10)
Broderick, Avery E. (10)
show more...
Byun, Do Young (10)
Chen, Ming Tang (10)
Conway, John, 1963 (10)
Huang, Chih Wei L. (10)
Inoue, Makoto (10)
Jiang, Wu (10)
Jung, Taehyun (10)
Kawashima, Tomohisa (10)
Koay, Jun Yi (10)
Koch, Patrick M. (10)
Koyama, Shoko (10)
Kuo, Cheng Yu (10)
Alberdi, Antxon (9)
Ball, David (9)
Barrett, John (9)
Blackburn, Lindy (9)
Brissenden, Roger (9)
Bronzwaer, Thomas (9)
Chan, Chi Kwan (9)
Chatterjee, Koushik (9)
Chen, Yongjun (9)
Christian, Pierre (9)
Cordes, James M. (9)
Cui, Yuzhu (9)
Davelaar, Jordy (9)
Dempsey, Jessica (9)
Desvignes, Gregory (9)
Eatough, Ralph P. (9)
Fromm, Christian M. (9)
Galison, Peter (9)
Gammie, Charles F. (9)
Gentaz, Olivier (9)
Gu, Minfeng (9)
Hecht, Michael H. (9)
Ho, Luis C. (9)
Huang, Lei (9)
James, David J. (9)
Jannuzi, Buell T. (9)
Jeter, Britton (9)
Johnson, Michael D. (9)
Karami, Mansour (9)
Kim, Junhan (9)
Kim, Jongsoo (9)
Lauer, Tod R. (9)
show less...
University
Chalmers University of Technology (29)
Royal Institute of Technology (21)
University of Gothenburg (5)
Lund University (5)
Uppsala University (4)
Stockholm University (3)
show more...
Mälardalen University (3)
Linköping University (3)
Luleå University of Technology (2)
University of Gävle (1)
Mid Sweden University (1)
RISE (1)
Karolinska Institutet (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (64)
Research subject (UKÄ/SCB)
Natural sciences (32)
Medical and Health Sciences (1)
Agricultural Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view