1. |
- Cheng, Q., et al.
(författare)
-
Unveiling anneal hardening in dilute Al-doped AlxCoCrFeMnNi (x=0, 0.1) high-entropy alloys
- 2021
-
Ingår i: Journal of Materials Science & Technology. - : Elsevier BV. - 1005-0302. ; 91, s. 270-277
-
Tidskriftsartikel (refereegranskat)abstract
- Anneal hardening has been one of the approaches to improve mechanical properties of solid solution alloys with the face-centered cubic (FCC) structure, whereby a considerable strengthening can be attained by annealing of cold-worked alloys below the recrystallization temperature (T-rx). Microscopically, this hardening effect has been ascribed to several mechanisms, i.e. solute segregation to defects (dislocation and stacking fault) and short-range chemical ordering, etc. However, none of these mechanisms can well explain the anneal hardening recently observed in phase-pure and coarse-grained FCC-structured high-entropy alloys (HEAs). Here we report the observations, using high-resolution electron channeling contrast imaging and transmission electron microscopy, of profuse and stable dislocation substructures in a cold-rolled CoCrFeMnNi HEA subject to an annealing below T-rx. The dislocation substructures are observed to be thermally stable up to T-rx, which could arise from the chemical complexity of the high-entropy system where certain elemental diffusion retardation occurs. The microstructure feature is markedly different from that of conventional dilute solid solution alloys, in which dislocation substructures gradually vanish by recovery during annealing, leading to a strength drop. Furthermore, dilute addition of 2 at.% Al leads to a reduction in both microhardness and yield strength of the cold-rolled and subsequently annealed (<= 500 degrees C) HEA. This Al induced softening effect, could be associated with the anisotropic formation of dislocation substructure, resulting from enhanced dislocation planar slip due to glide plane softening effect. These findings suggest that the strength of HEAs can be tailored through the anneal hardening effect from dislocation substructure strengthening.
|
|
2. |
- Kirchhoff, Tomas, et al.
(författare)
-
Breast cancer risk and 6q22.33 : combined results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2
- 2012
-
Ingår i: PLOS ONE. - : Public library of science. - 1932-6203. ; 7:6
-
Tidskriftsartikel (refereegranskat)abstract
- Recently, a locus on chromosome 6q22.33 (rs2180341) was reported to be associated with increased breast cancer risk in the Ashkenazi Jewish (AJ) population, and this association was also observed in populations of non-AJ European ancestry. In the present study, we performed a large replication analysis of rs2180341 using data from 31,428 invasive breast cancer cases and 34,700 controls collected from 25 studies in the Breast Cancer Association Consortium (BCAC). In addition, we evaluated whether rs2180341 modifies breast cancer risk in 3,361 BRCA1 and 2,020 BRCA2 carriers from 11 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Based on the BCAC data from women of European ancestry, we found evidence for a weak association with breast cancer risk for rs2180341 (per-allele odds ratio (OR) = 1.03, 95% CI 1.00-1.06, p = 0.023). There was evidence for heterogeneity in the ORs among studies (I(2) = 49.3%; p = <0.004). In CIMBA, we observed an inverse association with the minor allele of rs2180341 and breast cancer risk in BRCA1 mutation carriers (per-allele OR = 0.89, 95%CI 0.80-1.00, p = 0.048), indicating a potential protective effect of this allele. These data suggest that that 6q22.33 confers a weak effect on breast cancer risk.
|
|
3. |
- Maxwell, Christopher A., et al.
(författare)
-
Interplay between BRCA1 and RHAMM Regulates Epithelial Apicobasal Polarization and May Influence Risk of Breast Cancer
- 2011
-
Ingår i: PLoS Biology. - : Public Library of Science (PLoS). - 1545-7885 .- 1544-9173. ; 9:11
-
Tidskriftsartikel (refereegranskat)abstract
- Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.
|
|
4. |
- Stevens, Kristen N, et al.
(författare)
-
19p13.1 is a triple negative-specific breast cancer susceptibility locus
- 2012
-
Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 72, s. 1795-
-
Tidskriftsartikel (refereegranskat)abstract
- The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with risk of ovarian cancer. Here we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 Odds Ratio (OR)=1.10, 95% Confidence Interval (CI) 1.05 - 1.15, p=3.49 x 10-5] and triple negative (TN) (ER, PR and HER2 negative) breast cancer [rs8170 OR=1.22, 95% CI 1.13 - 1.31, p=2.22 x 10-7]. However, rs8170 was no longer associated with ER-negative breast cancer risk when TN cases were excluded [OR=0.98, 95% CI 0.89 - 1.07, p=0.62]. In addition, a combined analysis of TN cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC) (n=3,566) identified a genome-wide significant association between rs8170 and TN breast cancer risk [OR=1.25, 95% CI 1.18 - 1.33, p=3.31 x 10-13]. Thus, 19p13.1 is the first triple negative-specific breast cancer risk locus and the first locus specific to a histological subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple negative tumors and other subtypes likely arise through distinct etiologic pathways.
|
|
5. |
- Yoshiji, Satoshi, et al.
(författare)
-
Proteome-wide Mendelian randomization implicates nephronectin as an actionable mediator of the effect of obesity on COVID-19 severity
- 2023
-
Ingår i: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 5, s. 248-264
-
Tidskriftsartikel (refereegranskat)abstract
- How obesity contributes to COVID-19 severity is not fully understood. In this study, Yoshiji et al. found that the plasma protein nephronectin partially mediates the effect of obesity on the risk of COVID-19 severity using a two-step Mendelian randomization approach and omics analyses. Obesity is a major risk factor for Coronavirus disease (COVID-19) severity; however, the mechanisms underlying this relationship are not fully understood. As obesity influences the plasma proteome, we sought to identify circulating proteins mediating the effects of obesity on COVID-19 severity in humans. Here, we screened 4,907 plasma proteins to identify proteins influenced by body mass index using Mendelian randomization. This yielded 1,216 proteins, whose effect on COVID-19 severity was assessed, again using Mendelian randomization. We found that an s.d. increase in nephronectin (NPNT) was associated with increased odds of critically ill COVID-19 (OR = 1.71, P = 1.63 x 10(-10)). The effect was driven by an NPNT splice isoform. Mediation analyses supported NPNT as a mediator. In single-cell RNA-sequencing, NPNT was expressed in alveolar cells and fibroblasts of the lung in individuals who died of COVID-19. Finally, decreasing body fat mass and increasing fat-free mass were found to lower NPNT levels. These findings provide actionable insights into how obesity influences COVID-19 severity.
|
|
6. |
- Antoniou, Antonis C., et al.
(författare)
-
Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers
- 2011
-
Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:16, s. 3304-3321
-
Tidskriftsartikel (refereegranskat)abstract
- Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2 mutation carriers of European ancestry, the 6q25.1 SNPs (r(2) = 0.14) were independently associated with the risk of breast cancer for BRCA1 mutation carriers [ hazard ratio (HR) = 1.17, 95% confidence interval (CI): 1.11-1.23, P-trend = 4.5 x 10(-9) for rs2046210; HR = 1.28, 95% CI: 1.18-1.40, P-trend = 1.3 x 10(-8) for rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR = 1.14, 95% CI: 1.01-1.28, P-trend = 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2 mutation carriers (HR = 1.09, 95% CI: 1.02-1.17, P-trend = 0.015), but was not associated with breast cancer risk for BRCA1 mutation carriers (HR = 0.97, 95% CI: 0.92-1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development in these women.
|
|
7. |
- Chang, Yanhai, et al.
(författare)
-
Inflammatory cytokine of IL-1β is involved in T-2 toxin-triggered chondrocyte injury and metabolism imbalance by the activation of Wnt/β-catenin signaling
- 2017
-
Ingår i: Molecular Immunology. - : Elsevier. - 0161-5890 .- 1872-9142. ; 91, s. 195-201
-
Tidskriftsartikel (refereegranskat)abstract
- Mycotoxin T-2 exerts a causative role in Kashin-Beck disease (KBD) suffering chondrocyte apoptosis and cartilage matrix homeostasis disruption. Recent research corroborated the aberrant levels of pro-inflammatory cytokine IL-1ß in KBD patients and mycotoxin environment. In the present study, we investigated the relevance of IL-1ß in T-2 toxin-evoked chondrocyte cytotoxic injury and aberrant catabolism. High levels of IL-1ß were detected in serum and cartilages from KBD patients and in T-2-stimulated chondrocytes. Moreover, knockdown of IL-1ß antagonized the adverse effects of T-2 on cytotoxic injury by enhancing cell viability and inhibiting apoptosis. However, exogenous supplementation of IL-1β further aggravated cell damage in response to T-2. Additionally, cessation of IL-1β rescued T-2-elicited tilt of matrix homeostasis toward catabolism by elevating the transcription of collagen II and aggrecan, promoting release of sulphated glycosaminoglycans (sGAG) and TIMP1, and suppressing matrix metalloproteinases production including MMP-1, MMP-3 and MMP-13. Conversely, IL-1β stimulation deteriorated T-2-induced disruption of matrix metabolism balance toward catabolism. Mechanistic analysis found the high activation of Wnt/β-catenin in KBD patients and chondrocytes upon T-2. Furthermore, this activation was mitigated after IL-1β inhibition, but further enhanced following IL-1β precondition. Importantly, blocking this pathway by transfection with β-catenin alleviated the adverse roles of IL-1β on cytotoxic injury and metabolism disorders under T-2 conditioning. Together, this study elucidates a new insight into how T-2 deteriorates the pathological progression of KBD by regulating inflammation-related pathways, indicating a promising anti-inflammation strategy for KBD therapy.
|
|
8. |
- Cheng, Q., et al.
(författare)
-
Solid solution softening in a Aloi CoCrFeMnNi high-entropy alloy
- 2020
-
Ingår i: Scripta Materialia. - : Elsevier BV. - 1359-6462 .- 1872-8456. ; 186, s. 63-68
-
Tidskriftsartikel (refereegranskat)abstract
- Solute effects on high-entropy alloys of equiatomic proportions are scientifically intriguing because there is no such well-defined "solute" and "solvent" atoms compared to those of conventional single principal element alloys. To date, most of the face-centered cubic alloys exhibit solid solution strengthening rather than softening due to the interactions between dislocations and solute atoms. Here, we present the careful experimental measurements and demonstrate solid solution softening, albeit weak, in a single phase CoCrFeMnNi through the minor addition of 2. at.% Al. This softening effect is mostly related to the decreased Peierl's stress by Al addition.
|
|
9. |
- Dai, Yao, et al.
(författare)
-
TMEFF1 is a neuron-specific restriction factor for herpes simplex virus
- 2024
-
Ingår i: NATURE. - 0028-0836 .- 1476-4687. ; 632, s. 383-389
-
Tidskriftsartikel (refereegranskat)abstract
- The brain is highly sensitive to damage caused by infection and inflammation1,2. Herpes simplex virus 1 (HSV-1) is a neurotropic virus and the cause of herpes simplex encephalitis3. It is unknown whether neuron-specific antiviral factors control virus replication to prevent infection and excessive inflammatory responses, hence protecting the brain. Here we identify TMEFF1 as an HSV-1 restriction factor using genome-wide CRISPR screening. TMEFF1 is expressed specifically in neurons of the central nervous system and is not regulated by type I interferon, the best-known innate antiviral system controlling virus infections. Depletion of TMEFF1 in stem-cell-derived human neurons led to elevated viral replication and neuronal death following HSV-1 infection. TMEFF1 blocked the HSV-1 replication cycle at the level of viral entry through interactions with nectin-1 and non-muscle myosin heavy chains IIA and IIB, which are core proteins in virus-cell binding and virus-cell fusion, respectively4-6. Notably, Tmeff1-/- mice exhibited increased susceptibility to HSV-1 infection in the brain but not in the periphery. Within the brain, elevated viral load was observed specifically in neurons. Our study identifies TMEFF1 as a neuron-specific restriction factor essential for prevention of HSV-1 replication in the central nervous system. A study identifies TMEFF1 as a neuron-specific restriction factor essential for prevention of replication of herpes simplex virus type 1 in the central nervous system.
|
|
10. |
- Ding, Yuan C, et al.
(författare)
-
A nonsynonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers
- 2012
-
Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 21:8, s. 1362-1370
-
Tidskriftsartikel (refereegranskat)abstract
- BACKGROUND: We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were associated with breast cancer risk in a larger cohort of BRCA1 and BRCA2 mutation carriers.METHODS: IRS1 rs1801123, rs1330645, and rs1801278 were genotyped in samples from 36 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analyzed by a retrospective cohort approach modeling the associations with breast and ovarian cancer risks simultaneously. Analyses were stratified by BRCA1 and BRCA2 status and mutation class in BRCA1 carriers.RESULTS: Rs1801278 (Gly972Arg) was associated with ovarian cancer risk for both BRCA1 (HR, 1.43; 95% confidence interval (CI), 1.06-1.92; P = 0.019) and BRCA2 mutation carriers (HR, 2.21; 95% CI, 1.39-3.52, P = 0.0008). For BRCA1 mutation carriers, the breast cancer risk was higher in carriers with class II mutations than class I mutations (class II HR, 1.86; 95% CI, 1.28-2.70; class I HR, 0.86; 95%CI, 0.69-1.09; P(difference), 0.0006). Rs13306465 was associated with ovarian cancer risk in BRCA1 class II mutation carriers (HR, 2.42; P = 0.03).CONCLUSION: The IRS1 Gly972Arg single-nucleotide polymorphism, which affects insulin-like growth factor and insulin signaling, modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers and breast cancer risk in BRCA1 class II mutation carriers.Impact: These findings may prove useful for risk prediction for breast and ovarian cancers in BRCA1 and BRCA2 mutation carriers.
|
|