SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chiotis Konstantinos) ;lar1:(su)"

Sökning: WFRF:(Chiotis Konstantinos) > Stockholms universitet

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chiotis, Konstantinos, et al. (författare)
  • Dual tracer tau PET imaging reveals different molecular targets for C-11-THK5351 and C-11-PBB3 in the Alzheimer brain
  • 2018
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 45:9, s. 1605-1617
  • Tidskriftsartikel (refereegranskat)abstract
    • Several tau PET tracers have been developed, but it remains unclear whether they bind to the same molecular target on the heterogeneous tau pathology. In this study we evaluated the binding of two chemically different tau-specific PET tracers (C-11-THK5351 and C-11-PBB3) in a head-to-head, in vivo, multimodal design. Nine patients with a diagnosis of mild cognitive impairment or probable Alzheimer's disease and cerebrospinal fluid biomarker evidence supportive of the presence of Alzheimer's disease brain pathology were recruited after thorough clinical assessment. All patients underwent imaging with the tau-specific PET tracers C-11-THK5351 and C-11-PBB3 on the same day, as well as imaging with the amyloid-beta-specific tracer C-11-AZD2184, a T1-MRI sequence, and neuropsychological assessment. The load and regional distribution of binding differed between C-11-THK5351 and C-11-PBB3 with no statistically significant regional correlations observed between the tracers. The binding pattern of C-11-PBB3, but not that of C-11-THK5351, in the temporal lobe resembled that of C-11-AZD2184, with strong correlations detected between C-11-PBB3 and C-11-AZD2184 in the temporal and occipital lobes. Global cognition correlated more closely with C-11-THK5351 than with C-11-PBB3 binding. Similarly, cerebrospinal fluid tau measures and entorhinal cortex thickness were more closely correlated with C-11-THK5351 than with C-11-PBB3 binding. This research suggests different molecular targets for these tracers; while C-11-PBB3 appeared to preferentially bind to tau deposits with a close spatial relationship to amyloid-beta, the binding pattern of C-11-THK5351 fitted the expected distribution of tau pathology in Alzheimer's disease better and was more closely related to downstream disease markers.
  •  
2.
  • Chiotis, Konstantinos, et al. (författare)
  • Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm
  • 2016
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 43:9, s. 1686-1699
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The aim of this study was to explore the cerebral distribution of the tau-specific PET tracer [F-18]THK5317 (also known as (S)-[F-18]THK5117) retention in different stages of Alzheimer's disease; and study any associations with markers of hypometabolism and amyloid-beta deposition. Methods Thirty-three individuals were enrolled, including nine patients with Alzheimer's disease dementia, thirteen with mild cognitive impairment (MCI), two with non-Alzheimer's disease dementia, and nine healthy controls (five young and four elderly). In a multi-tracer PET design [F-18]THK5317, [C-11] Pittsburgh compound B ([C-11]PIB), and [F-18]FDG were used to assess tau pathology, amyloid-beta deposition and cerebral glucose metabolism, respectively. The MCI patients were further divided into MCI [C-11]PIB-positive (n=11) and MCI [C-11]PIB-negative (n=2) groups. Results Test-retest variability for [F-18]THK5317-PET was very low (1.17-3.81 %), as shown by retesting five patients. The patients with prodromal (MCI [C-11]PIB-positive) and dementia-stage Alzheimer's disease had significantly higher [F-18]THK5317 retention than healthy controls (p=0.002 and p=0.001, respectively) in areas exceeding limbic regions, and their discrimination from this control group (using the area under the curve) was >98 %. Focal negative correlations between [F-18]THK5317 retention and [F-18]FDG uptake were observed mainly in the frontal cortex, and focal positive correlations were found between [F-18]THK5317 and [C-11] PIB retentions isocortically. One patient with corticobasal degeneration syndrome and one with progressive supranuclear palsy showed no [C-11]PIB but high [F-18]THK5317 retentions with a different regional distribution from that in Alzheimer's disease patients. Conclusions The tau-specific PET tracer [F-18]THK5317 images in vivo the expected regional distribution of tau pathology. This distribution contrasts with the different patterns of hypometabolism and amyloid-beta deposition.
  •  
3.
  • Iaccarino, Leonardo, et al. (författare)
  • A Cross-Validation of FDG- and Amyloid-PET Biomarkers in Mild Cognitive Impairment for the Risk Prediction to Dementia due to Alzheimer's Disease in a Clinical Setting
  • 2017
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 59:2, s. 603-614
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessments of brain glucose metabolism (F-18-FDG-PET) and cerebral amyloid burden (C-11-PiB-PET) in mild cognitive impairment (MCI) have shown highly variable performances when adopted to predict progression to dementia due to Alzheimer's disease (ADD). This study investigates, in a clinical setting, the separate and combined values of F-18-FDGPET and C-11-PiB-PET in ADD conversion prediction with optimized data analysis procedures. Respectively, we investigate the accuracy of an optimized SPM analysis for F-18-FDG-PET and of standardized uptake value ratio semiquantification for C-11-PiB-PET in predicting ADD conversion in 30 MCI subjects (age 63.57 +/- 7.78 years). Fourteen subjects converted to ADD during the follow-up (median 26.5 months, inter-quartile range 30 months). Receiver operating characteristic analyses showed an area under the curve (AUC) of 0.89 and of 0.81 for, respectively, F-18-FDG-PET and C-11-PiB-PET. F-18-FDG-PET, compared to C-11-PiB-PET, showed higher specificity (1.00 versus 0.62, respectively), but lower sensitivity (0.79 versus 1.00). Combining the biomarkers improved classification accuracy (AUC = 0.96). During the follow-up time, all the MCI subjects positive for both PET biomarkers converted to ADD, whereas all the subjects negative for both remained stable. The difference in survival distributions was confirmed by a log-rank test (p = 0.002). These results indicate a very high accuracy in predicting MCI to ADD conversion of both F-18-FDG-PET and C-11-PiB-PET imaging, the former showing optimal performance based on the SPM optimized parametric assessment. Measures of brain glucose metabolism and amyloid load represent extremely powerful diagnostic and prognostic biomarkers with complementary roles in prodromal dementia phase, particularly when tailored to individual cases in clinical settings.
  •  
4.
  • Leuzy, Antoine, et al. (författare)
  • Concordance and Diagnostic Accuracy of [C-11]PIB PET and Cerebrospinal Fluid Biomarkers in a Sample of Patients with Mild Cognitive Impairment and Alzheimer's Disease
  • 2015
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 45:4, s. 1077-1088
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer's disease (AD) pathology can be quantified in vivo using cerebrospinal fluid (CSF) levels of amyloid-beta(1-42) (A beta(1-42)), total-tau (t-tau), and phosphorylated tau (p- tau(181p)), as well as with positron emission tomography (PET) using [C-11]Pittsburgh compound-B ([C-11]PIB). Studies assessing concordance between these measures, however, have provided conflicting results. Moreover, it has been proposed that [C-11]PIB PET may be of greater clinical utility in terms of identifying patients with mild cognitive impairment (MCI) who will progress to the dementia phase of AD. Objective: To determine concordance and classification accuracy of CSF biomarkers and [C-11]PIB PET in a cohort of patients with MCI and AD. Methods: 68 patients (MCI, n = 33; AD, n = 35) underwent [C-11]PIB PET and CSF sampling. Cutoffs of >1.41 ([C-11]PIB), <450 pg/mL-and a more lenient cutoff of 550 pg/mL-(A beta(1-42)), <6.5 (A beta(1-42)/p-tau181p), and 1.14 (A beta(1- 42)/t-tau), were used to determine concordance. Logistic regression was used to determine classification accuracy with respect to stable MCI (sMCI) versus MCI who progressed to AD (pMCI). Results: Concordance between [C-11]PIB and A beta(1-42) was highest for sMCI (67%), followed by AD (60%) and pMCI (33%). Agreement was increased across groups using A beta(1-42) < 550 pg/mL, or A beta(1-42) to tau ratios. Logistic regression showed that classification accuracy of [11C] PIB, between sMCI and pMCI, was superior to A beta(1-42) (73% versus 58%), A beta(1-42)/t-tau (63%), and A beta(1-42)/p-tau181p (65%). Conclusion: In the present study, [C-11]PIB proved a better predictor of progression to AD in patients with MCI, relative to CSF measures of A beta(1-42) or A beta(1-42)/tau. Discordance between PET and CSF markers for A beta(1-42) suggests they cannot be used interchangeably, as is currently the case.
  •  
5.
  • Leuzy, Antoine, et al. (författare)
  • Longitudinal uncoupling of cerebral perfusion, glucose metabolism, and tau deposition in Alzheimer's disease
  • 2018
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 14:5, s. 652-663
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Cross-sectional findings using the tau tracer [F-18] THK5317 (THK5317) have shown that [F-18]fluorodeoxyglucose (FDG) positron emission tomography (PET) data can be approximated using perfusion measures (early-frame standardized uptake value ratio; ratio of tracer delivery in target to reference regions). In this way, a single PET study can provide both functional and molecular information. Methods: We included 16 patients with Alzheimer's disease who completed follow-up THK5317 and FDG studies 17 months after baseline investigations. Linear mixed-effects models and annual percentage change maps were used to examine longitudinal change. Results: Limited spatial overlap was observed between areas showing declines in THK5317 perfusion measures and FDG. Minimal overlap was seen between areas showing functional change and those showing increased retention of THK5317. Discussion: Our findings suggest a spatiotemporal offset between functional changes and tau pathology and a partial uncoupling between perfusion and metabolism, possibly as a function of Alzheimer's disease severity.
  •  
6.
  • Leuzy, Antoine, et al. (författare)
  • Tau PET imaging in neurodegenerative tauopathies-still a challenge
  • 2019
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 24:8, s. 1112-1134
  • Forskningsöversikt (refereegranskat)abstract
    • The accumulation of pathological misfolded tau is a feature common to a collective of neurodegenerative disorders known as tauopathies, of which Alzheimer's disease (AD) is the most common. Related tauopathies include progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), Down's syndrome (DS), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Investigation of the role of tau pathology in the onset and progression of these disorders is now possible due the recent advent of tau-specific ligands for use with positron emission tomography (PET), including first-(e.g., [F-18] THK5317, [F-18] THK5351, [F-18] AV1451, and [C-11] PBB3) and second-generation compounds [namely [F-18] MK-6240, [F-18] RO-948 (previously referred to as [F-18] RO69558948), [F-18] PI-2620, [F-18] GTP1, [F-18] PM-PBB3, and [F-18] JNJ64349311 ([F-18] JNJ311) and its derivative [F-18] JNJ-067)]. In this review we describe and discuss findings from in vitro and in vivo studies using both initial and new tau ligands, including their relation to biomarkers for amyloid-beta and neurodegeneration, and cognitive findings. Lastly, methodological considerations for the quantification of in vivo ligand binding are addressed, along with potential future applications of tau PET, including therapeutic trials.
  •  
7.
  • Rodriguez-Vieitez, Elena, et al. (författare)
  • Comparison of Early-Phase C-11-Deuterium-L-Deprenyl and C-11-Pittsburgh Compound B PET for Assessing Brain Perfusion in Alzheimer Disease
  • 2016
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 57:7, s. 1071-1077
  • Tidskriftsartikel (refereegranskat)abstract
    • The PET tracer C-11-deuterium-L-deprenyl (C-11-DED) has been used to visualize activated astrocytes in vivo in patients with Alzheimer disease (AD). In this multitracer PET study, early-phase C-11-DED and C-11-Pittsburgh compound B (C-11-PiB) (eDED and ePiB, respectively) were compared as surrogate markers of brain perfusion, and the extent to which C-11-DED binding is influenced by brain perfusion was investigated. METHODS: C-11-DED, C-11-PiB, and F-18-FDG dynamic PET scans were obtained in age-matched groups comprising AD patients (n = 8), patients with mild cognitive impairment (n = 17), and healthy controls (n = 16). A modified reference Patlak model was used to quantify C-11-DED binding. A simplified reference tissue model was applied to both C-11-DED and C-11-PiB to measure brain perfusion relative to the cerebellar gray matter (R-1) and binding potentials. C-11-PiB retention and F-18-FDG uptake were also quantified as target-to-pons SUV ratios in 12 regions of interest (ROIs). RESULTS: The strongest within-subject correlations with the corresponding R-1 values (R-1,R-DED and R-1,R-PiB, respectively) and with F-18-FDG uptake were obtained when the eDED and ePiB PET data were measured 1-4 min after injection. The optimum eDED/ePiB intervals also showed strong, significant ROI-based intersubject Pearson correlations with R-1,R-DED/R-1,R-PiB and with F-18-FDG uptake, whereas C-11-DED binding was largely independent of brain perfusion, as measured by eDED. Corresponding voxelwise correlations confirmed the ROI-based results. Temporoparietal eDED or ePiB brain perfusion measurements were highly discriminative between patient and control groups, with discriminative ability statistically comparable to that of temporoparietal F-18-FDG glucose metabolism. Hypometabolism extended over wider regions than hypoperfusion in patient groups compared with controls. CONCLUSION: The 1- to 4-min early-frame intervals of C-11-DED or C-11-PiB are suitable surrogate measures for brain perfusion. C-11-DED binding is independent of brain perfusion, and thus C-11-DED PET can provide information on both functional (brain perfusion) and pathologic (astrocytosis) aspects from a single PET scan. In comparison with glucose metabolism, early-phase C-11-DED and C-11-PiB perfusion appear to provide complementary rather than redundant information.
  •  
8.
  • Rodriguez-Vieitez, Elena, et al. (författare)
  • Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease
  • 2016
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 139:3, s. 922-936
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationships between pathophysiological processes in Alzheimer's disease remain largely unclear. In a longitudinal, multitracer PET study, Rodriguez-Vieitez et al. reveal that progression of autosomal dominant Alzheimer's disease is accompanied by prominent early and then declining astrocytosis, increasing amyloid plaque deposition and decreasing glucose metabolism. Astrocyte activation may initiate Alzheimer pathology.See Schott and Fox (doi: 10.1093/brain/awv405) for a scientific commentary on this article. The relationships between pathophysiological processes in Alzheimer's disease remain largely unclear. In a longitudinal, multitracer PET study, Rodriguez-Vieitez et al. reveal that progression of autosomal dominant Alzheimer's disease is accompanied by prominent early and then declining astrocytosis, increasing amyloid plaque deposition and decreasing glucose metabolism. Astrocyte activation may initiate Alzheimer pathology.Alzheimer's disease is a multifactorial dementia disorder characterized by early amyloid-beta, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer's disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer C-11-deuterium-L-deprenyl), fibrillar amyloid-beta plaque deposition (C-11-Pittsburgh compound B), and glucose metabolism (F-18-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer's disease mutation carriers (n = 11; 49.6 +/- 10.3 years old) and non-carriers (n = 16; 51.1 +/- 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (n = 17; 61.9 +/- 6.4 years old; nine male) and sporadic Alzheimer's disease (n = 8; 63.0 +/- 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer's disease participants belonged to families with known mutations in either presenilin 1 (PSEN1) or amyloid precursor protein (APPswe or APParc) genes. Sporadic mild cognitive impairment patients were further divided into C-11-Pittsburgh compound B-positive (n = 13; 62.0 +/- 6.4; seven male) and C-11-Pittsburgh compound B-negative (n = 4; 61.8 +/- 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants underwent clinical and imaging follow-up examinations after 2.8 +/- 0.6 years. By using linear mixed-effects models, fibrillar amyloid-beta plaque deposition was first observed in the striatum of presymptomatic autosomal dominant Alzheimer's disease carriers from 17 years before expected symptom onset; at about the same time, astrocytosis was significantly elevated and then steadily declined. Diverging from the astrocytosis pattern, amyloid-beta plaque deposition increased with disease progression. Glucose metabolism steadily declined from 10 years after initial amyloid-beta plaque deposition. Patients with sporadic mild cognitive impairment who were C-11-Pittsburgh compound B-positive at baseline showed increasing amyloid-beta plaque deposition and decreasing glucose metabolism but, in contrast to autosomal dominant Alzheimer's disease carriers, there was no significant longitudinal decline in astrocytosis over time. The prominent initially high and then declining astrocytosis in autosomal dominant Alzheimer's disease carriers, contrasting with the increasing amyloid-beta plaque load during disease progression, suggests astrocyte activation is implicated in the early stages of Alzheimer's disease pathology.
  •  
9.
  • Saint-Aubert, Laure, et al. (författare)
  • Regional tau deposition measured by [F-18]THK5317 positron emission tomography is associated to cognition via glucose metabolism in Alzheimer's disease
  • 2016
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The recent development of tau-specific positron emission tomography (PET) tracers has allowed in vivo quantification of regional tau deposition and offers the opportunity to monitor the progression of tau pathology along with cognitive impairment. In this study, we investigated the relationships of cerebral tau deposition ([F-18]THK5317-PET) and metabolism ([F-18]FDG-PET) with concomitant cognitive function in patients with probable Alzheimer's disease (AD). Methods: Nine patients diagnosed with AD dementia and 11 with prodromal AD (mild cognitive impairment, amyloid-positive on [C-11]PiB-PET) were included in this study. All patients underwent PET scans using each tracer, as well as episodic memory and global cognition assessment. Linear models were used to investigate the association of regional [F-18]THK5317 retention and [F-18]FDG uptake with cognition. The possible mediating effect of local metabolism on the relationship between tau deposition and cognitive performance was investigated using mediation analyses. Results: Significant negative associations were found between [F-18]THK5317 regional retention, mainly in temporal regions, and both episodic memory and global cognition. Significant positive associations were found between [F-18]FDG regional uptake and cognition. The association of [F-18]FDG with global cognition was regionally more extensive than that of [F-18]THK5317, while the opposite was observed with episodic memory, suggesting that [F-18]THK5317 retention might be more sensitive than [F-18]FDG regional uptake to early cognitive impairment. Finally, [F-18]FDG uptake had a mediating effect on the relationship between [F-18]THK5317 retention in temporal regions and global cognition. Conclusions: These findings suggest a mediating role for local glucose metabolism in the observed association between in vivo tau deposition and concomitant cognitive impairment in AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy