SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chiotis Konstantinos) ;mspu:(article)"

Sökning: WFRF:(Chiotis Konstantinos) > Tidskriftsartikel

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chiotis, Konstantinos, et al. (författare)
  • [F-18]THK5317 imaging as a tool for predicting prospective cognitive decline in Alzheimer's disease
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 26:10, s. 5875-5887
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-sectional studies have indicated potential for positron emission tomography (PET) in imaging tau pathology in Alzheimer's disease (AD); however, its prognostic utility remains unproven. In a longitudinal, multi-modal, prognostic study of cognitive decline, 20 patients with a clinical biomarker-based diagnosis in the AD spectrum (mild cognitive impairment or dementia and a positive amyloid-beta PET scan) were recruited from the Cognitive Clinic at Karolinska University Hospital. The participants underwent baseline neuropsychological assessment, PET imaging with [F-18]THK5317, [C-11]PIB and [F-18]FDG, magnetic resonance imaging, and in a subgroup cerebrospinal fluid (CSF) sampling, with clinical follow-up after a median 48 months (interquartile range = 32:56). In total, 11 patients declined cognitively over time, while 9 remained cognitively stable. The accuracy of baseline [F-18]THK5317 binding in temporal areas was excellent at predicting future cognitive decline (area under the receiver operating curve 0.84-1.00) and the biomarker levels were strongly associated with the rate of cognitive decline (beta estimate -33.67 to -31.02,p < 0.05). The predictive accuracy of the other baseline biomarkers was poor (area under the receiver operating curve 0.58-0.77) and their levels were not associated with the rate of cognitive decline (beta estimate -4.64 to 15.78,p > 0.05). Baseline [F-18]THK5317 binding and CSF tau levels were more strongly associated with the MMSE score at follow-up than at baseline (p < 0.05). These findings support a temporal dissociation between tau deposition and cognitive impairment, and suggest that [F-18]THK5317 predicts future cognitive decline better than other biomarkers. The use of imaging markers for tau pathology could prove useful for clinical prognostic assessment and screening before inclusion in relevant clinical trials.
  •  
2.
  • Chiotis, Konstantinos, et al. (författare)
  • Dual tracer tau PET imaging reveals different molecular targets for C-11-THK5351 and C-11-PBB3 in the Alzheimer brain
  • 2018
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 45:9, s. 1605-1617
  • Tidskriftsartikel (refereegranskat)abstract
    • Several tau PET tracers have been developed, but it remains unclear whether they bind to the same molecular target on the heterogeneous tau pathology. In this study we evaluated the binding of two chemically different tau-specific PET tracers (C-11-THK5351 and C-11-PBB3) in a head-to-head, in vivo, multimodal design. Nine patients with a diagnosis of mild cognitive impairment or probable Alzheimer's disease and cerebrospinal fluid biomarker evidence supportive of the presence of Alzheimer's disease brain pathology were recruited after thorough clinical assessment. All patients underwent imaging with the tau-specific PET tracers C-11-THK5351 and C-11-PBB3 on the same day, as well as imaging with the amyloid-beta-specific tracer C-11-AZD2184, a T1-MRI sequence, and neuropsychological assessment. The load and regional distribution of binding differed between C-11-THK5351 and C-11-PBB3 with no statistically significant regional correlations observed between the tracers. The binding pattern of C-11-PBB3, but not that of C-11-THK5351, in the temporal lobe resembled that of C-11-AZD2184, with strong correlations detected between C-11-PBB3 and C-11-AZD2184 in the temporal and occipital lobes. Global cognition correlated more closely with C-11-THK5351 than with C-11-PBB3 binding. Similarly, cerebrospinal fluid tau measures and entorhinal cortex thickness were more closely correlated with C-11-THK5351 than with C-11-PBB3 binding. This research suggests different molecular targets for these tracers; while C-11-PBB3 appeared to preferentially bind to tau deposits with a close spatial relationship to amyloid-beta, the binding pattern of C-11-THK5351 fitted the expected distribution of tau pathology in Alzheimer's disease better and was more closely related to downstream disease markers.
  •  
3.
  • Chiotis, Konstantinos, et al. (författare)
  • Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm
  • 2016
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 43:9, s. 1686-1699
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The aim of this study was to explore the cerebral distribution of the tau-specific PET tracer [F-18]THK5317 (also known as (S)-[F-18]THK5117) retention in different stages of Alzheimer's disease; and study any associations with markers of hypometabolism and amyloid-beta deposition. Methods Thirty-three individuals were enrolled, including nine patients with Alzheimer's disease dementia, thirteen with mild cognitive impairment (MCI), two with non-Alzheimer's disease dementia, and nine healthy controls (five young and four elderly). In a multi-tracer PET design [F-18]THK5317, [C-11] Pittsburgh compound B ([C-11]PIB), and [F-18]FDG were used to assess tau pathology, amyloid-beta deposition and cerebral glucose metabolism, respectively. The MCI patients were further divided into MCI [C-11]PIB-positive (n=11) and MCI [C-11]PIB-negative (n=2) groups. Results Test-retest variability for [F-18]THK5317-PET was very low (1.17-3.81 %), as shown by retesting five patients. The patients with prodromal (MCI [C-11]PIB-positive) and dementia-stage Alzheimer's disease had significantly higher [F-18]THK5317 retention than healthy controls (p=0.002 and p=0.001, respectively) in areas exceeding limbic regions, and their discrimination from this control group (using the area under the curve) was >98 %. Focal negative correlations between [F-18]THK5317 retention and [F-18]FDG uptake were observed mainly in the frontal cortex, and focal positive correlations were found between [F-18]THK5317 and [C-11] PIB retentions isocortically. One patient with corticobasal degeneration syndrome and one with progressive supranuclear palsy showed no [C-11]PIB but high [F-18]THK5317 retentions with a different regional distribution from that in Alzheimer's disease patients. Conclusions The tau-specific PET tracer [F-18]THK5317 images in vivo the expected regional distribution of tau pathology. This distribution contrasts with the different patterns of hypometabolism and amyloid-beta deposition.
  •  
4.
  • Iaccarino, Leonardo, et al. (författare)
  • A Cross-Validation of FDG- and Amyloid-PET Biomarkers in Mild Cognitive Impairment for the Risk Prediction to Dementia due to Alzheimer's Disease in a Clinical Setting
  • 2017
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 59:2, s. 603-614
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessments of brain glucose metabolism (F-18-FDG-PET) and cerebral amyloid burden (C-11-PiB-PET) in mild cognitive impairment (MCI) have shown highly variable performances when adopted to predict progression to dementia due to Alzheimer's disease (ADD). This study investigates, in a clinical setting, the separate and combined values of F-18-FDGPET and C-11-PiB-PET in ADD conversion prediction with optimized data analysis procedures. Respectively, we investigate the accuracy of an optimized SPM analysis for F-18-FDG-PET and of standardized uptake value ratio semiquantification for C-11-PiB-PET in predicting ADD conversion in 30 MCI subjects (age 63.57 +/- 7.78 years). Fourteen subjects converted to ADD during the follow-up (median 26.5 months, inter-quartile range 30 months). Receiver operating characteristic analyses showed an area under the curve (AUC) of 0.89 and of 0.81 for, respectively, F-18-FDG-PET and C-11-PiB-PET. F-18-FDG-PET, compared to C-11-PiB-PET, showed higher specificity (1.00 versus 0.62, respectively), but lower sensitivity (0.79 versus 1.00). Combining the biomarkers improved classification accuracy (AUC = 0.96). During the follow-up time, all the MCI subjects positive for both PET biomarkers converted to ADD, whereas all the subjects negative for both remained stable. The difference in survival distributions was confirmed by a log-rank test (p = 0.002). These results indicate a very high accuracy in predicting MCI to ADD conversion of both F-18-FDG-PET and C-11-PiB-PET imaging, the former showing optimal performance based on the SPM optimized parametric assessment. Measures of brain glucose metabolism and amyloid load represent extremely powerful diagnostic and prognostic biomarkers with complementary roles in prodromal dementia phase, particularly when tailored to individual cases in clinical settings.
  •  
5.
  •  
6.
  • Jonasson, My, et al. (författare)
  • Optimal timing of tau pathology imaging and automatic extraction of a reference region using dynamic [18F]THK5317 PET
  • 2019
  • Ingår i: NeuroImage. - : Elsevier BV. - 2213-1582. ; 22
  • Tidskriftsartikel (refereegranskat)abstract
    • [F-18]THK5317 is a PET tracer for in-vivo imaging of tau associated with Alzheimer's disease (AD). This work aimed to evaluate optimal timing for standardized uptake value ratio (SUVR) measures with [F-18]THK5317 and automated generation of SUVR-1 and relative cerebral blood flow (R-1) parametric images. Nine AD patients and nine controls underwent 90 min [F-18]THK5317 scans. SUVR-1 was calculated at transient equilibrium (TE) and for seven different 20 min intervals and compared with distribution volume ratio (DVR; reference Logan). Cerebellar grey matter (MRI) was used as reference region. A supervised cluster analysis (SVCA) method was implemented to automatically generate a reference region, directly from the dynamic PET volume without the need of a structural MRI scan, for computation of SUVR-1 and R-1 images for a scan duration matching the optimal timing. TE was reached first in putamen, frontal- and parietal cortex at 22 +/- 4 min for AD patients and in putamen at 20 +/- 0 min in controls. Over all regions and subjects, SUVR20-40-1 correlated best with DVR-1, R-2 = 0.97. High correlation was found between values generated using MRI- and SVCA-based reference (R-2 = 0.93 for SUVR20-40-1; R-2 = 0.94 for R-1). SUVR20-40 allows for accurate semi-quantitative assessment of tau pathology and SVCA may be used to obtain a reference region for calculation of both SUVR-1 and R-1 with 40 min scan duration.
  •  
7.
  • Jonasson, My, et al. (författare)
  • Tracer kinetic analysis of (S)-18F-THK5117 as a PET tracer for assessing tau pathology.
  • 2016
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 57:4, s. 574-581
  • Tidskriftsartikel (refereegranskat)abstract
    • Because a correlation between tau pathology and the clinical symptoms of Alzheimer's disease (AD) has been hypothesized, there is increasing interest in developing PET tracers that bind specifically to tau protein. The aim of this study was to evaluate tracer kinetic models for quantitative analysis and generation of parametric images for the novel tau ligand (S)-(18)F-THK5117.METHODS: 9 subjects (5 with AD, 4 with mild cognitive impairment) received a 90 min dynamic (S)-(18)F-THK5117 PET scan. Arterial blood was sampled for measurement of blood radioactivity and metabolite analysis. VOI-based analysis was performed using plasma-input models; single-tissue and two-tissue (2TCM) compartment models and plasma-input Logan, and reference tissue models; simplified reference tissue model (SRTM), reference Logan and standardised uptake value ratio (SUVr). Cerebellum grey matter was used as reference region. Voxel-level analysis was performed using basis function implementations of SRTM, reference Logan and SUVr. Regionally averaged voxel values were compared to VOI-based values from the optimal reference tissue model and simulations were made to assess accuracy and precision. In addition to 90 min, initial 40 and 60 min data were analysed.RESULTS: Plasma-input Logan distribution volume ratio (DVR)-1 values agreed well with 2TCM DVR-1 values (R2=0.99, slope=0.96). SRTM binding potential (BPND) and reference Logan DVR-1 values were highly correlated with plasma-input Logan DVR-1 (R2=1.00, slope≈1.00) while SUVr70-90-1 values correlated less well and overestimated binding. Agreement between parametric methods and SRTM was best for reference Logan (R2=0.99, slope=1.03). SUVr70-90-1 values were almost 3 times higher than BPND values in white matter and 1.5 times higher in grey matter. Simulations showed poorer accuracy and precision for SUVr70-90-1 values than for the other reference methods. SRTM BPND and reference Logan DVR-1 values were not affected by a shorter scan duration of 60 min.CONCLUSION: SRTM BPND and reference Logan DVR-1 values were highly correlated with plasma-input Logan DVR-1 values. VOI-based data analyses indicated robust results for scan durations of 60 min. Reference Logan generated quantitative (S)-(18)F-THK5117 DVR-1 parametric images with the greatest accuracy and precision, and with a much lower white matter signal than seen with SUVr-1 images.
  •  
8.
  • Leuzy, Antoine, et al. (författare)
  • Clinical impact of [18F]flutemetamol PET among memory clinic patients with an unclear diagnosis.
  • 2019
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 46:6, s. 1276-1286
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To investigate the impact of amyloid PET with [18F]flutemetamol on diagnosis and treatment management in a cohort of patients attending a tertiary memory clinic in whom, despite extensive cognitive assessment including neuropsychological testing, structural imaging, CSF biomarker analysis and in some cases [18F]FDG PET, the diagnosis remained unclear.METHODS: The study population consisted of 207 patients with a clinical diagnosis prior to [18F]flutemetamol PET including mild cognitive impairment (MCI; n = 131), Alzheimer's disease (AD; n = 41), non-AD (n = 10), dementia not otherwise specified (dementia NOS; n = 20) and subjective cognitive decline (SCD; n = 5).RESULTS: Amyloid positivity was found in 53% of MCI, 68% of AD, 20% of non-AD, 20% of dementia NOS, and 60% of SCD patients. [18F]Flutemetamol PET led, overall, to a change in diagnosis in 92 of the 207 patients (44%). A high percentage of patients with a change in diagnosis was observed in the MCI group (n = 67, 51%) and in the dementia NOS group (n = 11; 55%), followed by the non-AD and AD (30% and 20%, respectively). A significant increase in cholinesterase inhibitor treatment was observed after [18F]flutemetamol PET (+218%, 34 patients before and 108 patients after).CONCLUSION: The present study lends support to the clinical value of amyloid PET in patients with an uncertain diagnosis in the tertiary memory clinic setting.
  •  
9.
  • Leuzy, Antoine, et al. (författare)
  • Concordance and Diagnostic Accuracy of [C-11]PIB PET and Cerebrospinal Fluid Biomarkers in a Sample of Patients with Mild Cognitive Impairment and Alzheimer's Disease
  • 2015
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 45:4, s. 1077-1088
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer's disease (AD) pathology can be quantified in vivo using cerebrospinal fluid (CSF) levels of amyloid-beta(1-42) (A beta(1-42)), total-tau (t-tau), and phosphorylated tau (p- tau(181p)), as well as with positron emission tomography (PET) using [C-11]Pittsburgh compound-B ([C-11]PIB). Studies assessing concordance between these measures, however, have provided conflicting results. Moreover, it has been proposed that [C-11]PIB PET may be of greater clinical utility in terms of identifying patients with mild cognitive impairment (MCI) who will progress to the dementia phase of AD. Objective: To determine concordance and classification accuracy of CSF biomarkers and [C-11]PIB PET in a cohort of patients with MCI and AD. Methods: 68 patients (MCI, n = 33; AD, n = 35) underwent [C-11]PIB PET and CSF sampling. Cutoffs of >1.41 ([C-11]PIB), <450 pg/mL-and a more lenient cutoff of 550 pg/mL-(A beta(1-42)), <6.5 (A beta(1-42)/p-tau181p), and 1.14 (A beta(1- 42)/t-tau), were used to determine concordance. Logistic regression was used to determine classification accuracy with respect to stable MCI (sMCI) versus MCI who progressed to AD (pMCI). Results: Concordance between [C-11]PIB and A beta(1-42) was highest for sMCI (67%), followed by AD (60%) and pMCI (33%). Agreement was increased across groups using A beta(1-42) < 550 pg/mL, or A beta(1-42) to tau ratios. Logistic regression showed that classification accuracy of [11C] PIB, between sMCI and pMCI, was superior to A beta(1-42) (73% versus 58%), A beta(1-42)/t-tau (63%), and A beta(1-42)/p-tau181p (65%). Conclusion: In the present study, [C-11]PIB proved a better predictor of progression to AD in patients with MCI, relative to CSF measures of A beta(1-42) or A beta(1-42)/tau. Discordance between PET and CSF markers for A beta(1-42) suggests they cannot be used interchangeably, as is currently the case.
  •  
10.
  • Leuzy, Antoine, et al. (författare)
  • Longitudinal uncoupling of cerebral perfusion, glucose metabolism, and tau deposition in Alzheimer's disease
  • 2018
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 14:5, s. 652-663
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Cross-sectional findings using the tau tracer [F-18] THK5317 (THK5317) have shown that [F-18]fluorodeoxyglucose (FDG) positron emission tomography (PET) data can be approximated using perfusion measures (early-frame standardized uptake value ratio; ratio of tracer delivery in target to reference regions). In this way, a single PET study can provide both functional and molecular information. Methods: We included 16 patients with Alzheimer's disease who completed follow-up THK5317 and FDG studies 17 months after baseline investigations. Linear mixed-effects models and annual percentage change maps were used to examine longitudinal change. Results: Limited spatial overlap was observed between areas showing declines in THK5317 perfusion measures and FDG. Minimal overlap was seen between areas showing functional change and those showing increased retention of THK5317. Discussion: Our findings suggest a spatiotemporal offset between functional changes and tau pathology and a partial uncoupling between perfusion and metabolism, possibly as a function of Alzheimer's disease severity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Chiotis, Konstantino ... (18)
Nordberg, Agneta (17)
Wall, Anders (11)
Leuzy, Antoine (9)
Almkvist, Ove (8)
Savitcheva, Irina (7)
visa fler...
Antoni, Gunnar (5)
Rodriguez-Vieitez, E ... (5)
Lubberink, Mark (4)
Jonasson, My (4)
Sörensen, Jens (3)
Lilja, Johan (3)
Carter, Stephen F. (3)
Jelic, Vesna (3)
Eriksson, Jonas (3)
Blennow, Kaj, 1958 (2)
Andersen, Pia (2)
Natarajan Arul, Muru ... (1)
Zetterberg, Henrik, ... (1)
Otto, Markus (1)
Ferreira, Daniel (1)
Westman, Eric (1)
Pannee, Josef, 1979 (1)
Bogdanovic, Nenad (1)
Ågren, Hans (1)
Portelius, Erik, 197 ... (1)
Winblad, Bengt (1)
Långström, Bengt (1)
Rinne, Juha O. (1)
Halldin, Christer (1)
Fortea, Juan (1)
Lleó, Alberto (1)
Thordardottir, Stein ... (1)
Graff, Caroline (1)
Almeida, Rita (1)
Borg, Beatrice (1)
Cerami, Chiara (1)
Thibblin, Alf (1)
von Arnim, Christine ... (1)
Perani, Daniela (1)
de Mendonça, Alexand ... (1)
Hasselbalch, Steen G (1)
Santana, Isabel (1)
Herukka, Sanna-Kaisa (1)
Johansson, Jarkko (1)
Takano, Akihiro (1)
Arakawa, Ryosuke (1)
Varrone, Andrea (1)
Blesa, Rafael (1)
Stenkrona, Per (1)
visa färre...
Lärosäte
Uppsala universitet (14)
Karolinska Institutet (12)
Stockholms universitet (8)
Göteborgs universitet (2)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (19)
Samhällsvetenskap (3)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy